Properties

Label 16.4.12234586511...9792.1
Degree $16$
Signature $[4, 6]$
Discriminant $2^{48}\cdot 337^{5}$
Root discriminant $49.31$
Ramified primes $2, 337$
Class number $4$ (GRH)
Class group $[4]$ (GRH)
Galois group 16T1281

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![8738, 44504, 82772, 101944, 84782, 50736, 18996, 4224, -2469, -1888, -1156, -440, -46, -24, 12, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 + 12*x^14 - 24*x^13 - 46*x^12 - 440*x^11 - 1156*x^10 - 1888*x^9 - 2469*x^8 + 4224*x^7 + 18996*x^6 + 50736*x^5 + 84782*x^4 + 101944*x^3 + 82772*x^2 + 44504*x + 8738)
 
gp: K = bnfinit(x^16 + 12*x^14 - 24*x^13 - 46*x^12 - 440*x^11 - 1156*x^10 - 1888*x^9 - 2469*x^8 + 4224*x^7 + 18996*x^6 + 50736*x^5 + 84782*x^4 + 101944*x^3 + 82772*x^2 + 44504*x + 8738, 1)
 

Normalized defining polynomial

\( x^{16} + 12 x^{14} - 24 x^{13} - 46 x^{12} - 440 x^{11} - 1156 x^{10} - 1888 x^{9} - 2469 x^{8} + 4224 x^{7} + 18996 x^{6} + 50736 x^{5} + 84782 x^{4} + 101944 x^{3} + 82772 x^{2} + 44504 x + 8738 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(1223458651169586375181729792=2^{48}\cdot 337^{5}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $49.31$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 337$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{25856846277670877237645738513816089} a^{15} - \frac{4008601486977179112339060355335930}{25856846277670877237645738513816089} a^{14} + \frac{8782637596788594480009427959766803}{25856846277670877237645738513816089} a^{13} - \frac{6853440272720154689108198788454617}{25856846277670877237645738513816089} a^{12} - \frac{824698792758640840933893819341132}{25856846277670877237645738513816089} a^{11} - \frac{5386428639238595286245365733120909}{25856846277670877237645738513816089} a^{10} - \frac{12559925783714967253665809499507087}{25856846277670877237645738513816089} a^{9} + \frac{2225892152043234276120338975409619}{25856846277670877237645738513816089} a^{8} - \frac{5592627416024847463582999432818447}{25856846277670877237645738513816089} a^{7} + \frac{9635516165588065742637031035208900}{25856846277670877237645738513816089} a^{6} - \frac{47458261422988382923336597490610}{25856846277670877237645738513816089} a^{5} - \frac{7597513753008461660997021788165645}{25856846277670877237645738513816089} a^{4} + \frac{5888973661615972067715511335340358}{25856846277670877237645738513816089} a^{3} + \frac{2130323637745322746170210914455525}{25856846277670877237645738513816089} a^{2} + \frac{4708846994791353250400088351572477}{25856846277670877237645738513816089} a - \frac{1369387609953926228775755359276926}{25856846277670877237645738513816089}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{4}$, which has order $4$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 16085590.4804 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1281:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 1024
The 34 conjugacy class representatives for t16n1281
Character table for t16n1281 is not computed

Intermediate fields

\(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\), 8.8.476342910976.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.24.9$x^{8} + 8 x^{7} + 14 x^{4} + 4 x^{2} + 8 x + 30$$8$$1$$24$$C_4\times C_2$$[2, 3, 4]$
2.8.24.10$x^{8} + 16$$8$$1$$24$$C_4\times C_2$$[2, 3, 4]$
337Data not computed