Properties

Label 16.4.12186628450...0000.2
Degree $16$
Signature $[4, 6]$
Discriminant $2^{8}\cdot 5^{10}\cdot 29^{4}\cdot 41^{3}$
Root discriminant $18.00$
Ramified primes $2, 5, 29, 41$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 16T1781

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -25, 73, -78, 135, -118, 139, 60, -72, 90, -39, 1, 15, -21, 12, -5, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 5*x^15 + 12*x^14 - 21*x^13 + 15*x^12 + x^11 - 39*x^10 + 90*x^9 - 72*x^8 + 60*x^7 + 139*x^6 - 118*x^5 + 135*x^4 - 78*x^3 + 73*x^2 - 25*x + 1)
 
gp: K = bnfinit(x^16 - 5*x^15 + 12*x^14 - 21*x^13 + 15*x^12 + x^11 - 39*x^10 + 90*x^9 - 72*x^8 + 60*x^7 + 139*x^6 - 118*x^5 + 135*x^4 - 78*x^3 + 73*x^2 - 25*x + 1, 1)
 

Normalized defining polynomial

\( x^{16} - 5 x^{15} + 12 x^{14} - 21 x^{13} + 15 x^{12} + x^{11} - 39 x^{10} + 90 x^{9} - 72 x^{8} + 60 x^{7} + 139 x^{6} - 118 x^{5} + 135 x^{4} - 78 x^{3} + 73 x^{2} - 25 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(121866284502500000000=2^{8}\cdot 5^{10}\cdot 29^{4}\cdot 41^{3}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $18.00$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 29, 41$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{218} a^{14} - \frac{11}{109} a^{13} - \frac{39}{218} a^{12} - \frac{18}{109} a^{11} + \frac{89}{218} a^{10} - \frac{55}{218} a^{9} - \frac{87}{218} a^{8} + \frac{46}{109} a^{7} - \frac{43}{109} a^{6} - \frac{41}{109} a^{5} + \frac{21}{109} a^{4} - \frac{99}{218} a^{3} - \frac{9}{218} a^{2} - \frac{33}{218} a - \frac{5}{109}$, $\frac{1}{2349065834518} a^{15} + \frac{5325578527}{2349065834518} a^{14} + \frac{230279749418}{1174532917259} a^{13} + \frac{12303640673}{90348685943} a^{12} + \frac{42742152351}{2349065834518} a^{11} - \frac{501933730134}{1174532917259} a^{10} - \frac{462340361831}{2349065834518} a^{9} + \frac{2079604055}{123635043922} a^{8} - \frac{784228517181}{2349065834518} a^{7} + \frac{96347047787}{2349065834518} a^{6} + \frac{271520387345}{2349065834518} a^{5} + \frac{33383082160}{1174532917259} a^{4} + \frac{53043737971}{2349065834518} a^{3} - \frac{585017162124}{1174532917259} a^{2} - \frac{451115240993}{1174532917259} a - \frac{107971375610}{1174532917259}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 4801.23083275 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1781:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 16384
The 148 conjugacy class representatives for t16n1781 are not computed
Character table for t16n1781 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 4.4.725.1, 8.4.21550625.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R $16$ R ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ $16$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ $16$ ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.4.0.1$x^{4} - x + 1$$1$$4$$0$$C_4$$[\ ]^{4}$
2.4.0.1$x^{4} - x + 1$$1$$4$$0$$C_4$$[\ ]^{4}$
2.8.8.3$x^{8} + 2 x^{7} + 2 x^{6} + 16$$2$$4$$8$$C_2^3: C_4$$[2, 2, 2]^{4}$
$5$5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
5.8.6.2$x^{8} + 15 x^{4} + 100$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
$29$29.8.0.1$x^{8} + x^{2} - 3 x + 3$$1$$8$$0$$C_8$$[\ ]^{8}$
29.8.4.1$x^{8} + 31958 x^{4} - 24389 x^{2} + 255328441$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$41$41.4.0.1$x^{4} - x + 17$$1$$4$$0$$C_4$$[\ ]^{4}$
41.4.3.2$x^{4} - 1476$$4$$1$$3$$C_4$$[\ ]_{4}$
41.8.0.1$x^{8} - x + 12$$1$$8$$0$$C_8$$[\ ]^{8}$