Normalized defining polynomial
\( x^{16} - 6 x^{15} + 223 x^{14} - 1045 x^{13} + 16639 x^{12} - 101082 x^{11} + 577204 x^{10} - 4365410 x^{9} + 1244977 x^{8} - 77115479 x^{7} - 338640099 x^{6} + 740318833 x^{5} - 14795099235 x^{4} + 72820441481 x^{3} - 200064755609 x^{2} + 251912468219 x - 78782439251 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(121398883921746872662013204631882371288461633=61^{8}\cdot 97^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $569.20$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $61, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{206} a^{14} - \frac{15}{206} a^{13} + \frac{25}{206} a^{12} - \frac{43}{103} a^{11} - \frac{79}{206} a^{10} - \frac{45}{206} a^{9} + \frac{27}{206} a^{8} - \frac{51}{206} a^{7} + \frac{33}{206} a^{6} + \frac{3}{206} a^{5} + \frac{5}{103} a^{4} - \frac{9}{206} a^{3} + \frac{16}{103} a^{2} + \frac{81}{206} a + \frac{43}{206}$, $\frac{1}{213282761949060973620045529374245918092736213803326454036069256945270090474129602} a^{15} + \frac{372278924929267378161064611564280758351087353321548360029553587670498826322231}{213282761949060973620045529374245918092736213803326454036069256945270090474129602} a^{14} - \frac{20671918848140373464545985075753142622932067093069768255738248941308257282512159}{106641380974530486810022764687122959046368106901663227018034628472635045237064801} a^{13} + \frac{1495784500504245270734875847909974481766825488729609698966984649598586718814762}{106641380974530486810022764687122959046368106901663227018034628472635045237064801} a^{12} - \frac{50887357000699908521239784615067178189869091997472340196581032806999001942479163}{106641380974530486810022764687122959046368106901663227018034628472635045237064801} a^{11} + \frac{19868368398222608185072724795767816879556638404723543475143268306864091504122307}{106641380974530486810022764687122959046368106901663227018034628472635045237064801} a^{10} - \frac{19789398987217106621931337966398753406935493157258739953787260943707027188766193}{213282761949060973620045529374245918092736213803326454036069256945270090474129602} a^{9} + \frac{45864084813712659880259972720454574284915740535877715261256776559884985196852767}{106641380974530486810022764687122959046368106901663227018034628472635045237064801} a^{8} - \frac{96861361673426438215226665316300606966350837534208512892739721652030858842338791}{213282761949060973620045529374245918092736213803326454036069256945270090474129602} a^{7} + \frac{40483951580267238464811940014775089757798148218373374827833746417755155178822539}{106641380974530486810022764687122959046368106901663227018034628472635045237064801} a^{6} + \frac{16517257232506623658472197169621903467837863662197207265311415238416584617816027}{106641380974530486810022764687122959046368106901663227018034628472635045237064801} a^{5} + \frac{22582240965427613361696390025537212966136363426373394175430941280405354024659855}{106641380974530486810022764687122959046368106901663227018034628472635045237064801} a^{4} - \frac{48340287557671611835656647403199960391326696746980362788130330917531918681109271}{213282761949060973620045529374245918092736213803326454036069256945270090474129602} a^{3} - \frac{17083221428282243195655514210160978177145600457787159307070355301177007831565073}{213282761949060973620045529374245918092736213803326454036069256945270090474129602} a^{2} - \frac{103228781640495612740706421257776206188847365142341287636398573454117182319574421}{213282761949060973620045529374245918092736213803326454036069256945270090474129602} a - \frac{352563506064508179908155460681883851614934622921051085792696587090535538418837}{2111710514347138352673718112616296218739962512904222317188804524210594955189402}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{4}$, which has order $32$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 140105605131000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times OD_{16}).D_4$ (as 16T591):
| A solvable group of order 256 |
| The 28 conjugacy class representatives for $(C_2\times OD_{16}).D_4$ |
| Character table for $(C_2\times OD_{16}).D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{97}) \), 4.4.912673.1, 8.8.1118720199956720578033.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | $16$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 61 | Data not computed | ||||||
| 97 | Data not computed | ||||||