Normalized defining polynomial
\( x^{16} - 2 x^{15} + 14 x^{14} - 82 x^{13} + 53 x^{12} - 512 x^{11} + 216 x^{10} - 3026 x^{9} - 13097 x^{8} - 38462 x^{7} - 17136 x^{6} - 13716 x^{5} - 2907 x^{4} - 82004 x^{3} - 568564 x^{2} + 100734 x - 359 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(11940778378121216000000000000=2^{24}\cdot 5^{12}\cdot 13^{2}\cdot 29^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $56.86$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 13, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{5} a^{8} - \frac{1}{5} a^{7} - \frac{1}{5} a^{6} - \frac{2}{5} a^{5} - \frac{1}{5} a^{4} + \frac{1}{5} a^{3} + \frac{1}{5} a^{2} + \frac{2}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{9} - \frac{2}{5} a^{7} + \frac{2}{5} a^{6} + \frac{2}{5} a^{5} + \frac{2}{5} a^{3} - \frac{2}{5} a^{2} - \frac{2}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{10} + \frac{1}{5} a^{5} + \frac{2}{5}$, $\frac{1}{5} a^{11} + \frac{1}{5} a^{6} + \frac{2}{5} a$, $\frac{1}{5} a^{12} + \frac{1}{5} a^{7} + \frac{2}{5} a^{2}$, $\frac{1}{5} a^{13} + \frac{1}{5} a^{7} + \frac{1}{5} a^{6} + \frac{2}{5} a^{5} + \frac{1}{5} a^{4} + \frac{1}{5} a^{3} - \frac{1}{5} a^{2} - \frac{2}{5} a - \frac{1}{5}$, $\frac{1}{5} a^{14} + \frac{2}{5} a^{7} - \frac{2}{5} a^{6} - \frac{2}{5} a^{5} + \frac{2}{5} a^{4} - \frac{2}{5} a^{3} + \frac{2}{5} a^{2} + \frac{2}{5} a - \frac{1}{5}$, $\frac{1}{258769475526021512243057533762738145072195} a^{15} - \frac{7553544096580583608105090133210032642658}{258769475526021512243057533762738145072195} a^{14} + \frac{3461944100375577524328967531002626809567}{258769475526021512243057533762738145072195} a^{13} + \frac{6339402882048156508809729933286811383252}{258769475526021512243057533762738145072195} a^{12} + \frac{2452503983365443629916555595128734684989}{258769475526021512243057533762738145072195} a^{11} + \frac{25697272401503122950284192750742256337888}{258769475526021512243057533762738145072195} a^{10} + \frac{23322853672284105149906940605320196256584}{258769475526021512243057533762738145072195} a^{9} - \frac{22461334485432776781061424244256367152829}{258769475526021512243057533762738145072195} a^{8} + \frac{101170916176603015583416173491742175751484}{258769475526021512243057533762738145072195} a^{7} + \frac{2293322047943196872100427430681815980416}{13619446080316921697003028092775691845905} a^{6} + \frac{25668706551915772590071597419804153095039}{51753895105204302448611506752547629014439} a^{5} + \frac{23220230744646879935661934773640836525142}{51753895105204302448611506752547629014439} a^{4} + \frac{75251471822296038009122778950219181566792}{258769475526021512243057533762738145072195} a^{3} - \frac{99971442937068067942388816398685958823496}{258769475526021512243057533762738145072195} a^{2} - \frac{65402530601881395235965235952365242389788}{258769475526021512243057533762738145072195} a + \frac{24330126748572712855670125151397319627284}{51753895105204302448611506752547629014439}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 19560904.4249 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 4096 |
| The 73 conjugacy class representatives for t16n1606 are not computed |
| Character table for t16n1606 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.725.1, 8.8.97556000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | R | $16$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | $16$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $13$ | 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $29$ | 29.8.0.1 | $x^{8} + x^{2} - 3 x + 3$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ |
| 29.8.7.3 | $x^{8} + 58$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |