Normalized defining polynomial
\( x^{16} - 18 x^{14} - 5214 x^{13} + 73695 x^{12} - 1032102 x^{11} + 13090654 x^{10} - 34026026 x^{9} - 1092134344 x^{8} - 18844746598 x^{7} + 120057079608 x^{6} - 778584634754 x^{5} + 12138022544004 x^{4} + 25818046094220 x^{3} - 669485660464680 x^{2} + 2187279234337270 x - 444209861085895 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1145665194381286185627968624158474240000000000=2^{24}\cdot 5^{10}\cdot 71^{8}\cdot 101^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $654.92$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 71, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{5} a^{14} + \frac{1}{5} a^{11} + \frac{1}{5} a^{9} - \frac{1}{5} a^{8} + \frac{2}{5} a^{7} - \frac{2}{5} a^{6} - \frac{2}{5} a^{5} + \frac{2}{5} a^{4}$, $\frac{1}{146753424969635456470755240867162650311804583406691207135841427638593046786128816187831273614457531621989093341172885} a^{15} - \frac{7616331809158737092468607347095951858774502125021613943463739936482584850088326577922591361769701030292108638402566}{146753424969635456470755240867162650311804583406691207135841427638593046786128816187831273614457531621989093341172885} a^{14} - \frac{12573878907605926645243596110796320221723187007751672865883486346358917810683336321217835752770164695809694441890007}{29350684993927091294151048173432530062360916681338241427168285527718609357225763237566254722891506324397818668234577} a^{13} + \frac{66737870066049313407180445799090172509768317570509376514618756653830442702541169947892774604096659848242311996401816}{146753424969635456470755240867162650311804583406691207135841427638593046786128816187831273614457531621989093341172885} a^{12} - \frac{54737799918245124176758893545975663903047209502662156939213803227497143913987313257624139209325077142681818329443126}{146753424969635456470755240867162650311804583406691207135841427638593046786128816187831273614457531621989093341172885} a^{11} + \frac{26953848140375200798212676711244204411136854340998979520601899718511725025045325746768634020488357363691768476402956}{146753424969635456470755240867162650311804583406691207135841427638593046786128816187831273614457531621989093341172885} a^{10} + \frac{37489827298257981113434574666514795122168317686114481396885569931766713627304254571336165093937190619247060632856043}{146753424969635456470755240867162650311804583406691207135841427638593046786128816187831273614457531621989093341172885} a^{9} + \frac{72868915485831666534051521071747340200085813336851599134153735852355638355290748202390240681536977786609450962982408}{146753424969635456470755240867162650311804583406691207135841427638593046786128816187831273614457531621989093341172885} a^{8} - \frac{51234341553271558030236970416403449134522866422741012978407473680513401740609781846540491141047384793874714480174944}{146753424969635456470755240867162650311804583406691207135841427638593046786128816187831273614457531621989093341172885} a^{7} - \frac{13835024992003260310441422003134820155791779548269578765583623876786435543479568971061597886437518050879619653872853}{29350684993927091294151048173432530062360916681338241427168285527718609357225763237566254722891506324397818668234577} a^{6} + \frac{12404989231199757889673099366120319422709132784882158601986697322997861576914621356198840093174764767553216984334769}{146753424969635456470755240867162650311804583406691207135841427638593046786128816187831273614457531621989093341172885} a^{5} + \frac{5018331988728356670332303273679480812330529091270043839142863041736243040119245965302041990206530884830550492550001}{11288724997664265882365787759012511562446506415899323625833955972199465137394524322140867201112117817076084103167145} a^{4} + \frac{8293800704873154447008304936221910488634418757801071358225970387482096559442224712304861434481413002687380205080186}{29350684993927091294151048173432530062360916681338241427168285527718609357225763237566254722891506324397818668234577} a^{3} + \frac{6106639062120578856026984877619775345122159389294993325064984338497741821762861178309647950171789781592031389659100}{29350684993927091294151048173432530062360916681338241427168285527718609357225763237566254722891506324397818668234577} a^{2} - \frac{1213223195906515662948119087331713718391243424952207765203315231734565055223267818314848867895605126545746014835446}{2668244090357008299468277106675684551123719698303476493378935047974419032475069385233295883899227847672528969839507} a - \frac{279058478576621707899310973253307238612006370129320381385202250759437797025936006335048056275957310544428200718696}{29350684993927091294151048173432530062360916681338241427168285527718609357225763237566254722891506324397818668234577}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{4}\times C_{4}$, which has order $256$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 157908636599000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 38 conjugacy class representatives for t16n813 |
| Character table for t16n813 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{355}) \), \(\Q(\sqrt{71}) \), 4.4.2525.1, 4.4.203656400.1, \(\Q(\sqrt{5}, \sqrt{71})\), 8.8.41475929260960000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 71 | Data not computed | ||||||
| 101 | Data not computed | ||||||