Normalized defining polynomial
\( x^{16} - 4 x^{15} - 4 x^{14} - 8 x^{13} - 393 x^{12} - 960 x^{11} - 2981 x^{10} - 12543 x^{9} - 27936 x^{8} - 56316 x^{7} - 101273 x^{6} - 130450 x^{5} - 142974 x^{4} - 147768 x^{3} - 110558 x^{2} - 45677 x - 7633 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(108951986979034819834970703125=5^{10}\cdot 101^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $65.29$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} + \frac{2}{5} a^{11} + \frac{2}{5} a^{10} - \frac{2}{5} a^{9} - \frac{1}{5} a^{8} + \frac{1}{5} a^{7} + \frac{2}{5} a^{6} - \frac{1}{5} a^{5} - \frac{2}{5} a^{4} - \frac{1}{5} a^{3} + \frac{2}{5}$, $\frac{1}{5} a^{13} - \frac{2}{5} a^{11} - \frac{1}{5} a^{10} - \frac{2}{5} a^{9} - \frac{2}{5} a^{8} - \frac{2}{5} a^{4} + \frac{2}{5} a^{3} + \frac{2}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{14} - \frac{2}{5} a^{11} + \frac{2}{5} a^{10} - \frac{1}{5} a^{9} - \frac{2}{5} a^{8} + \frac{2}{5} a^{7} - \frac{1}{5} a^{6} + \frac{1}{5} a^{5} - \frac{2}{5} a^{4} - \frac{2}{5} a^{3} + \frac{2}{5} a^{2} + \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{2454316868001048659211657505} a^{15} + \frac{89068514489676527031517582}{2454316868001048659211657505} a^{14} - \frac{46880727894142283309190038}{490863373600209731842331501} a^{13} + \frac{165691750304880577896914816}{2454316868001048659211657505} a^{12} + \frac{3017781988082477533848069}{2454316868001048659211657505} a^{11} + \frac{665999848607885521729793909}{2454316868001048659211657505} a^{10} - \frac{72353664040483239170665163}{490863373600209731842331501} a^{9} + \frac{24068544985016633250718326}{490863373600209731842331501} a^{8} - \frac{43222888022795900015481409}{2454316868001048659211657505} a^{7} + \frac{179425118504614880311111614}{490863373600209731842331501} a^{6} + \frac{405357574483893390523677972}{2454316868001048659211657505} a^{5} - \frac{325409273468159404570173947}{2454316868001048659211657505} a^{4} + \frac{193694460971577130824274269}{490863373600209731842331501} a^{3} + \frac{18049081300601119246181899}{490863373600209731842331501} a^{2} + \frac{8438434482862371910681136}{223119715272822605382877955} a - \frac{508594480817280203555254611}{2454316868001048659211657505}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 224291049.574 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4:D_4.D_4$ (as 16T681):
| A solvable group of order 256 |
| The 19 conjugacy class representatives for $C_4:D_4.D_4$ |
| Character table for $C_4:D_4.D_4$ |
Intermediate fields
| \(\Q(\sqrt{101}) \), 4.4.51005.1, 8.4.6568812813125.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $16$ | $16$ | R | $16$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | $16$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.3.4 | $x^{4} + 40$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 5.8.7.1 | $x^{8} - 5$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| 101 | Data not computed | ||||||