Properties

Label 16.4.10895198697...125.13
Degree $16$
Signature $[4, 6]$
Discriminant $5^{10}\cdot 101^{11}$
Root discriminant $65.29$
Ramified primes $5, 101$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_4:D_4.D_4$ (as 16T681)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![15353, 33522, 1253, 12557, -377, -10483, 2145, -14206, -10132, 4744, 2254, 635, 506, 63, -29, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - x^15 - 29*x^14 + 63*x^13 + 506*x^12 + 635*x^11 + 2254*x^10 + 4744*x^9 - 10132*x^8 - 14206*x^7 + 2145*x^6 - 10483*x^5 - 377*x^4 + 12557*x^3 + 1253*x^2 + 33522*x + 15353)
 
gp: K = bnfinit(x^16 - x^15 - 29*x^14 + 63*x^13 + 506*x^12 + 635*x^11 + 2254*x^10 + 4744*x^9 - 10132*x^8 - 14206*x^7 + 2145*x^6 - 10483*x^5 - 377*x^4 + 12557*x^3 + 1253*x^2 + 33522*x + 15353, 1)
 

Normalized defining polynomial

\( x^{16} - x^{15} - 29 x^{14} + 63 x^{13} + 506 x^{12} + 635 x^{11} + 2254 x^{10} + 4744 x^{9} - 10132 x^{8} - 14206 x^{7} + 2145 x^{6} - 10483 x^{5} - 377 x^{4} + 12557 x^{3} + 1253 x^{2} + 33522 x + 15353 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(108951986979034819834970703125=5^{10}\cdot 101^{11}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $65.29$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 101$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{13} a^{14} - \frac{6}{13} a^{13} - \frac{2}{13} a^{12} + \frac{5}{13} a^{10} - \frac{1}{13} a^{9} - \frac{5}{13} a^{8} + \frac{1}{13} a^{7} + \frac{5}{13} a^{6} + \frac{1}{13} a^{5} + \frac{6}{13} a^{4} + \frac{1}{13} a^{3} + \frac{3}{13} a^{2} - \frac{6}{13} a$, $\frac{1}{14908027749253777545074060229857701981963} a^{15} + \frac{491598183161156685619885057593537675361}{14908027749253777545074060229857701981963} a^{14} + \frac{5723221410372813610792645012967236049464}{14908027749253777545074060229857701981963} a^{13} + \frac{1104223948857350484018763070350000968331}{14908027749253777545074060229857701981963} a^{12} + \frac{4813510443967564301021340273775574494916}{14908027749253777545074060229857701981963} a^{11} + \frac{3787148753497633908430719973093445280998}{14908027749253777545074060229857701981963} a^{10} - \frac{7125677621488844507924161550349774574954}{14908027749253777545074060229857701981963} a^{9} - \frac{129831413865404852203259882772472429671}{346698319750087849885443261159481441441} a^{8} - \frac{443363932404653226601852841152971157156}{14908027749253777545074060229857701981963} a^{7} + \frac{1012430600986874554106485660803911802346}{14908027749253777545074060229857701981963} a^{6} + \frac{4877149799088654574426203862058914624797}{14908027749253777545074060229857701981963} a^{5} - \frac{4362902608583365459285542909344248764337}{14908027749253777545074060229857701981963} a^{4} - \frac{7275516347427443399422593352801913756917}{14908027749253777545074060229857701981963} a^{3} - \frac{2809689345695461325597546858043218372377}{14908027749253777545074060229857701981963} a^{2} + \frac{6326913375663262592266809936568939291151}{14908027749253777545074060229857701981963} a - \frac{458744990909676224671320639950532589387}{1146771365327213657313389248450592460151}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 187973620.235 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_4:D_4.D_4$ (as 16T681):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 256
The 19 conjugacy class representatives for $C_4:D_4.D_4$
Character table for $C_4:D_4.D_4$

Intermediate fields

\(\Q(\sqrt{101}) \), 4.4.51005.1, 8.4.6568812813125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $16$ $16$ R $16$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ $16$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.4.3.3$x^{4} + 10$$4$$1$$3$$C_4$$[\ ]_{4}$
5.4.0.1$x^{4} + x^{2} - 2 x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
5.8.7.1$x^{8} - 5$$8$$1$$7$$C_8:C_2$$[\ ]_{8}^{2}$
101Data not computed