Normalized defining polynomial
\( x^{16} - 4 x^{15} + 4 x^{14} + 26 x^{13} - 345 x^{12} + 1476 x^{11} - 4833 x^{10} + 7928 x^{9} - 11262 x^{8} - 1792 x^{7} + 45782 x^{6} - 100628 x^{5} + 96324 x^{4} - 31738 x^{3} - 16047 x^{2} + 13682 x + 4451 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1078732544346879404306640625=5^{10}\cdot 101^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $48.93$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{10} a^{8} - \frac{1}{5} a^{7} - \frac{1}{2} a^{6} + \frac{3}{10} a^{5} - \frac{2}{5} a^{4} + \frac{2}{5} a^{2} - \frac{1}{10} a - \frac{1}{10}$, $\frac{1}{10} a^{9} + \frac{1}{10} a^{7} + \frac{3}{10} a^{6} + \frac{1}{5} a^{5} + \frac{1}{5} a^{4} + \frac{2}{5} a^{3} - \frac{3}{10} a^{2} - \frac{3}{10} a - \frac{1}{5}$, $\frac{1}{10} a^{10} - \frac{1}{2} a^{7} - \frac{3}{10} a^{6} - \frac{1}{10} a^{5} - \frac{1}{5} a^{4} - \frac{3}{10} a^{3} + \frac{3}{10} a^{2} - \frac{1}{10} a + \frac{1}{10}$, $\frac{1}{10} a^{11} - \frac{3}{10} a^{7} + \frac{2}{5} a^{6} + \frac{3}{10} a^{5} - \frac{3}{10} a^{4} + \frac{3}{10} a^{3} - \frac{1}{10} a^{2} - \frac{2}{5} a - \frac{1}{2}$, $\frac{1}{150} a^{12} - \frac{1}{50} a^{11} - \frac{1}{25} a^{10} - \frac{1}{30} a^{9} - \frac{7}{150} a^{8} - \frac{37}{75} a^{7} + \frac{2}{75} a^{6} + \frac{26}{75} a^{5} - \frac{2}{15} a^{4} + \frac{4}{75} a^{3} + \frac{2}{5} a^{2} - \frac{14}{75} a + \frac{43}{150}$, $\frac{1}{150} a^{13} + \frac{7}{150} a^{10} - \frac{7}{150} a^{9} - \frac{1}{30} a^{8} + \frac{11}{75} a^{7} - \frac{71}{150} a^{6} + \frac{1}{150} a^{5} - \frac{37}{150} a^{4} - \frac{17}{50} a^{3} - \frac{29}{75} a^{2} + \frac{17}{75} a - \frac{6}{25}$, $\frac{1}{26850} a^{14} - \frac{13}{4475} a^{13} + \frac{37}{26850} a^{12} - \frac{959}{26850} a^{11} - \frac{67}{2685} a^{10} + \frac{283}{13425} a^{9} + \frac{11}{8950} a^{8} - \frac{2117}{5370} a^{7} - \frac{5909}{13425} a^{6} - \frac{1067}{8950} a^{5} - \frac{253}{537} a^{4} - \frac{1687}{13425} a^{3} + \frac{2894}{13425} a^{2} + \frac{10781}{26850} a + \frac{3529}{26850}$, $\frac{1}{1655479530651138790243031850} a^{15} - \frac{500572564314330402189}{275913255108523131707171975} a^{14} + \frac{292469499407408809649998}{275913255108523131707171975} a^{13} + \frac{170293543035497929511081}{275913255108523131707171975} a^{12} - \frac{63239881472022706953149467}{1655479530651138790243031850} a^{11} - \frac{11288417835527939467205431}{331095906130227758048606370} a^{10} - \frac{8503502588143572800855989}{275913255108523131707171975} a^{9} - \frac{26321345822640082242705637}{1655479530651138790243031850} a^{8} - \frac{51497098381692066554842737}{110365302043409252682868790} a^{7} - \frac{158367019241443766010481223}{1655479530651138790243031850} a^{6} - \frac{13501342785849316006818577}{1655479530651138790243031850} a^{5} - \frac{3038961513679082128388309}{66219181226045551609721274} a^{4} + \frac{20338550050923286939476755}{66219181226045551609721274} a^{3} - \frac{79577747675855571852421811}{275913255108523131707171975} a^{2} + \frac{238469328571266138155104172}{827739765325569395121515925} a - \frac{722266101963224775405394021}{1655479530651138790243031850}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 54131543.2062 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 32 conjugacy class representatives for t16n875 |
| Character table for t16n875 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.2525.1, 8.4.65037750625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 101 | Data not computed | ||||||