Properties

Label 16.4.10787325443...625.20
Degree $16$
Signature $[4, 6]$
Discriminant $5^{10}\cdot 101^{10}$
Root discriminant $48.93$
Ramified primes $5, 101$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 16T875

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![25, 400, 585, 1720, -1064, 165, -6709, 1787, -2005, 792, 272, -11, 144, -24, 18, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - x^15 + 18*x^14 - 24*x^13 + 144*x^12 - 11*x^11 + 272*x^10 + 792*x^9 - 2005*x^8 + 1787*x^7 - 6709*x^6 + 165*x^5 - 1064*x^4 + 1720*x^3 + 585*x^2 + 400*x + 25)
 
gp: K = bnfinit(x^16 - x^15 + 18*x^14 - 24*x^13 + 144*x^12 - 11*x^11 + 272*x^10 + 792*x^9 - 2005*x^8 + 1787*x^7 - 6709*x^6 + 165*x^5 - 1064*x^4 + 1720*x^3 + 585*x^2 + 400*x + 25, 1)
 

Normalized defining polynomial

\( x^{16} - x^{15} + 18 x^{14} - 24 x^{13} + 144 x^{12} - 11 x^{11} + 272 x^{10} + 792 x^{9} - 2005 x^{8} + 1787 x^{7} - 6709 x^{6} + 165 x^{5} - 1064 x^{4} + 1720 x^{3} + 585 x^{2} + 400 x + 25 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(1078732544346879404306640625=5^{10}\cdot 101^{10}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $48.93$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 101$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{5} a^{14} - \frac{1}{5} a^{13} - \frac{2}{5} a^{12} + \frac{1}{5} a^{11} - \frac{1}{5} a^{10} - \frac{1}{5} a^{9} + \frac{2}{5} a^{8} + \frac{2}{5} a^{7} + \frac{2}{5} a^{5} + \frac{1}{5} a^{4} + \frac{1}{5} a^{2}$, $\frac{1}{7268634866022809974994580985} a^{15} + \frac{16559247686156669894944252}{7268634866022809974994580985} a^{14} + \frac{236519500211978204437294169}{1453726973204561994998916197} a^{13} + \frac{9539850842009385527784689}{132156997564051090454446927} a^{12} + \frac{943309644911955374705369697}{7268634866022809974994580985} a^{11} + \frac{57025705714829713292644001}{234472092452348708870792935} a^{10} - \frac{113721146353372484876780971}{660784987820255452272234635} a^{9} + \frac{5087309343502932384511378}{660784987820255452272234635} a^{8} + \frac{2161216390953277481658456146}{7268634866022809974994580985} a^{7} - \frac{2735049642383881285293083013}{7268634866022809974994580985} a^{6} + \frac{92126460088634131711849817}{660784987820255452272234635} a^{5} - \frac{148110886851230254709125197}{660784987820255452272234635} a^{4} - \frac{3112366252036782451238517294}{7268634866022809974994580985} a^{3} + \frac{240894547892390936321880983}{660784987820255452272234635} a^{2} + \frac{667386170655121246970163497}{1453726973204561994998916197} a + \frac{487152407666145148370490103}{1453726973204561994998916197}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 28998775.7415 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T875:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 512
The 32 conjugacy class representatives for t16n875
Character table for t16n875 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 4.4.2525.1, 8.4.65037750625.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.4.3.1$x^{4} - 5$$4$$1$$3$$C_4$$[\ ]_{4}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.3.1$x^{4} - 5$$4$$1$$3$$C_4$$[\ ]_{4}$
101Data not computed