Normalized defining polynomial
\( x^{16} - x^{15} + x^{14} - 22 x^{13} + 104 x^{12} - 149 x^{11} - 63 x^{10} + 852 x^{9} - 2384 x^{8} + 2398 x^{7} + 4204 x^{6} - 15498 x^{5} + 13501 x^{4} + 8388 x^{3} - 30356 x^{2} + 29904 x - 9136 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1078732544346879404306640625=5^{10}\cdot 101^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $48.93$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{5} a^{7} + \frac{1}{5} a^{6} + \frac{2}{5} a^{4} - \frac{2}{5} a^{3} - \frac{2}{5} a^{2} - \frac{1}{5} a + \frac{2}{5}$, $\frac{1}{5} a^{8} - \frac{1}{5} a^{6} + \frac{2}{5} a^{5} + \frac{1}{5} a^{4} + \frac{1}{5} a^{2} - \frac{2}{5} a - \frac{2}{5}$, $\frac{1}{5} a^{9} - \frac{2}{5} a^{6} + \frac{1}{5} a^{5} + \frac{2}{5} a^{4} - \frac{1}{5} a^{3} + \frac{1}{5} a^{2} + \frac{2}{5} a + \frac{2}{5}$, $\frac{1}{10} a^{10} - \frac{1}{10} a^{7} - \frac{3}{10} a^{6} - \frac{3}{10} a^{5} - \frac{2}{5} a^{4} + \frac{2}{5} a^{3} - \frac{1}{2} a^{2} + \frac{1}{10} a + \frac{1}{5}$, $\frac{1}{10} a^{11} - \frac{1}{10} a^{8} - \frac{1}{10} a^{7} - \frac{1}{10} a^{6} - \frac{2}{5} a^{5} - \frac{1}{5} a^{4} + \frac{1}{10} a^{3} - \frac{3}{10} a^{2} + \frac{2}{5}$, $\frac{1}{100} a^{12} - \frac{1}{20} a^{11} + \frac{9}{100} a^{9} + \frac{1}{50} a^{8} - \frac{3}{50} a^{7} + \frac{33}{100} a^{6} - \frac{23}{50} a^{5} - \frac{41}{100} a^{4} + \frac{11}{50} a^{3} - \frac{47}{100} a^{2} - \frac{1}{50} a + \frac{6}{25}$, $\frac{1}{200} a^{13} - \frac{1}{40} a^{11} + \frac{9}{200} a^{10} + \frac{7}{200} a^{9} - \frac{2}{25} a^{8} + \frac{3}{200} a^{7} + \frac{99}{200} a^{6} + \frac{9}{200} a^{5} - \frac{63}{200} a^{4} + \frac{83}{200} a^{3} + \frac{23}{200} a^{2} + \frac{7}{100} a + \frac{3}{10}$, $\frac{1}{2000} a^{14} - \frac{3}{2000} a^{13} - \frac{9}{2000} a^{12} + \frac{11}{500} a^{11} + \frac{3}{100} a^{10} - \frac{73}{2000} a^{9} - \frac{77}{2000} a^{8} + \frac{37}{1000} a^{7} + \frac{9}{20} a^{6} + \frac{7}{1000} a^{5} + \frac{119}{500} a^{4} + \frac{163}{1000} a^{3} + \frac{133}{2000} a^{2} - \frac{447}{1000} a + \frac{1}{500}$, $\frac{1}{437750069062660000} a^{15} - \frac{80751072565607}{437750069062660000} a^{14} - \frac{548436879925157}{437750069062660000} a^{13} - \frac{49367889892649}{21887503453133000} a^{12} + \frac{2086539181212673}{54718758632832500} a^{11} - \frac{18108411564588353}{437750069062660000} a^{10} - \frac{4405042046628609}{87550013812532000} a^{9} + \frac{786690742739011}{218875034531330000} a^{8} + \frac{6394648506154171}{109437517265665000} a^{7} + \frac{36834116971340097}{218875034531330000} a^{6} - \frac{9565471213206103}{21887503453133000} a^{5} + \frac{17249111094165281}{218875034531330000} a^{4} + \frac{104609633860530829}{437750069062660000} a^{3} + \frac{79287994985368257}{218875034531330000} a^{2} + \frac{2675835246187153}{21887503453133000} a - \frac{1377328649410208}{13679689658208125}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 57899397.3137 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 32 conjugacy class representatives for t16n875 |
| Character table for t16n875 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.2525.1, 8.4.65037750625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 101 | Data not computed | ||||||