Properties

Label 16.4.10772822259...5968.1
Degree $16$
Signature $[4, 6]$
Discriminant $2^{48}\cdot 337^{3}$
Root discriminant $23.82$
Ramified primes $2, 337$
Class number $1$
Class group Trivial
Galois group 16T1251

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-31, 24, 272, 464, 282, 16, -60, -64, -117, -112, -60, -32, -2, -8, 4, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 + 4*x^14 - 8*x^13 - 2*x^12 - 32*x^11 - 60*x^10 - 112*x^9 - 117*x^8 - 64*x^7 - 60*x^6 + 16*x^5 + 282*x^4 + 464*x^3 + 272*x^2 + 24*x - 31)
 
gp: K = bnfinit(x^16 + 4*x^14 - 8*x^13 - 2*x^12 - 32*x^11 - 60*x^10 - 112*x^9 - 117*x^8 - 64*x^7 - 60*x^6 + 16*x^5 + 282*x^4 + 464*x^3 + 272*x^2 + 24*x - 31, 1)
 

Normalized defining polynomial

\( x^{16} + 4 x^{14} - 8 x^{13} - 2 x^{12} - 32 x^{11} - 60 x^{10} - 112 x^{9} - 117 x^{8} - 64 x^{7} - 60 x^{6} + 16 x^{5} + 282 x^{4} + 464 x^{3} + 272 x^{2} + 24 x - 31 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(10772822259327689555968=2^{48}\cdot 337^{3}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $23.82$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 337$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{4} a^{8} - \frac{1}{2} a^{6} + \frac{1}{4} a^{4} + \frac{1}{4}$, $\frac{1}{4} a^{9} - \frac{1}{2} a^{7} + \frac{1}{4} a^{5} + \frac{1}{4} a$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{9} - \frac{1}{8} a^{8} - \frac{1}{4} a^{7} + \frac{3}{8} a^{6} + \frac{3}{8} a^{5} - \frac{3}{8} a^{4} + \frac{1}{8} a^{2} + \frac{3}{8} a + \frac{1}{8}$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{8} - \frac{3}{8} a^{7} + \frac{1}{4} a^{6} + \frac{1}{4} a^{5} - \frac{1}{8} a^{4} + \frac{1}{8} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4} a + \frac{3}{8}$, $\frac{1}{8} a^{12} - \frac{1}{8} a^{9} - \frac{1}{8} a^{8} + \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{8} a^{5} + \frac{3}{8} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} + \frac{3}{8} a + \frac{1}{4}$, $\frac{1}{8} a^{13} - \frac{1}{8} a^{8} - \frac{1}{4} a^{6} - \frac{1}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{8} a - \frac{1}{8}$, $\frac{1}{8} a^{14} - \frac{1}{8} a^{9} - \frac{1}{4} a^{7} - \frac{1}{8} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{8} a^{2} - \frac{1}{8} a$, $\frac{1}{4078329613192} a^{15} - \frac{73674725209}{4078329613192} a^{14} + \frac{74297228687}{2039164806596} a^{13} - \frac{15621732477}{4078329613192} a^{12} + \frac{55943301187}{1019582403298} a^{11} + \frac{137862053893}{4078329613192} a^{10} + \frac{254611144075}{2039164806596} a^{9} + \frac{467323692623}{4078329613192} a^{8} + \frac{321175221335}{1019582403298} a^{7} + \frac{1986171447407}{4078329613192} a^{6} - \frac{346479614411}{1019582403298} a^{5} - \frac{205952346289}{4078329613192} a^{4} + \frac{654719301671}{4078329613192} a^{3} + \frac{81971640778}{509791201649} a^{2} - \frac{446837090499}{1019582403298} a + \frac{908583582283}{2039164806596}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 52707.7480361 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1251:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 1024
The 34 conjugacy class representatives for t16n1251
Character table for t16n1251 is not computed

Intermediate fields

\(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\), 8.8.1413480448.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed
Arithmetically equvalently siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ $16$ ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ $16$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ $16$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ $16$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{6}$ $16$ $16$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
337Data not computed