Normalized defining polynomial
\( x^{16} + 90 x^{14} - 56 x^{13} + 1609 x^{12} - 1976 x^{11} - 56396 x^{10} + 177724 x^{9} - 2155256 x^{8} + 6678928 x^{7} - 25810424 x^{6} + 33988936 x^{5} - 37254054 x^{4} - 70355216 x^{3} + 125361914 x^{2} - 166669624 x + 72311951 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(10704914143082750935040000000000=2^{32}\cdot 5^{10}\cdot 761^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $86.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 761$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{4645} a^{14} - \frac{1866}{4645} a^{13} - \frac{1303}{4645} a^{12} + \frac{1586}{4645} a^{11} - \frac{253}{929} a^{10} - \frac{305}{929} a^{9} + \frac{1294}{4645} a^{8} - \frac{204}{929} a^{7} + \frac{2193}{4645} a^{6} - \frac{147}{929} a^{5} - \frac{81}{4645} a^{4} + \frac{1877}{4645} a^{3} - \frac{1272}{4645} a^{2} - \frac{1902}{4645} a - \frac{761}{4645}$, $\frac{1}{729215778093725115779241389745483197291506914788201531494791565} a^{15} + \frac{38815560709669775155124822906359689397596867288814309375846}{729215778093725115779241389745483197291506914788201531494791565} a^{14} - \frac{34080180666827850958437245073228456561913263852323294163299291}{145843155618745023155848277949096639458301382957640306298958313} a^{13} - \frac{66445387445346682741475359103744688065579761055721739126097285}{145843155618745023155848277949096639458301382957640306298958313} a^{12} - \frac{198232131612582380773492046422097238741492277593941490608267513}{729215778093725115779241389745483197291506914788201531494791565} a^{11} + \frac{64766896633815211349192159374283423550185984458301443279259063}{145843155618745023155848277949096639458301382957640306298958313} a^{10} - \frac{273430284204121689798173978432312423297185994411005670322871856}{729215778093725115779241389745483197291506914788201531494791565} a^{9} + \frac{332595693128221575012932874965808430428277499980269608364776373}{729215778093725115779241389745483197291506914788201531494791565} a^{8} - \frac{279305317909500345860728395205773548458339707534698396902480642}{729215778093725115779241389745483197291506914788201531494791565} a^{7} - \frac{187244623751528606902821337508553996173370475422125458472336269}{729215778093725115779241389745483197291506914788201531494791565} a^{6} + \frac{168879708842567957893346122561308412327001112807857914365124434}{729215778093725115779241389745483197291506914788201531494791565} a^{5} + \frac{72421211659262039231565906641412955633207461009360407362100378}{145843155618745023155848277949096639458301382957640306298958313} a^{4} + \frac{13148691700488249436779221362569177102412553313504438120905142}{729215778093725115779241389745483197291506914788201531494791565} a^{3} - \frac{144807541383572116309633301650063112565737304923955212207501831}{729215778093725115779241389745483197291506914788201531494791565} a^{2} + \frac{28349836900269621767405147272745993597708747513022091814558744}{145843155618745023155848277949096639458301382957640306298958313} a + \frac{137422306250863182347471893845520047443659503224529550270292893}{729215778093725115779241389745483197291506914788201531494791565}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 292670864.561 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2048 |
| The 65 conjugacy class representatives for t16n1360 are not computed |
| Character table for t16n1360 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{10}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{2}, \sqrt{5})\), 8.8.1948160000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 761 | Data not computed | ||||||