Normalized defining polynomial
\( x^{16} - 8 x^{15} + 32 x^{14} - 36 x^{13} - 1408 x^{12} + 8548 x^{11} - 44354 x^{10} + 114852 x^{9} - 205841 x^{8} - 208908 x^{7} + 2305578 x^{6} - 7603764 x^{5} + 19279562 x^{4} - 27521876 x^{3} + 53236782 x^{2} - 34630408 x + 69429119 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(10704914143082750935040000000000=2^{32}\cdot 5^{10}\cdot 761^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $86.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 761$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{6} a^{11} - \frac{1}{6} a^{10} + \frac{1}{6} a^{9} - \frac{1}{2} a^{7} - \frac{1}{6} a^{6} + \frac{1}{6} a^{5} - \frac{1}{6} a^{3} + \frac{1}{6} a^{2} - \frac{1}{6} a + \frac{1}{3}$, $\frac{1}{60} a^{12} + \frac{3}{20} a^{10} + \frac{1}{15} a^{9} + \frac{1}{10} a^{8} - \frac{1}{15} a^{7} - \frac{7}{20} a^{6} - \frac{1}{3} a^{5} + \frac{7}{30} a^{4} - \frac{1}{20} a^{2} + \frac{1}{15} a - \frac{1}{60}$, $\frac{1}{180} a^{13} + \frac{1}{180} a^{12} - \frac{11}{180} a^{11} + \frac{11}{60} a^{10} - \frac{2}{9} a^{9} + \frac{1}{90} a^{8} - \frac{17}{36} a^{7} - \frac{9}{20} a^{6} - \frac{14}{45} a^{5} + \frac{37}{90} a^{4} + \frac{17}{180} a^{3} - \frac{19}{180} a^{2} - \frac{7}{180} a + \frac{19}{180}$, $\frac{1}{180} a^{14} + \frac{7}{90} a^{11} - \frac{5}{36} a^{10} - \frac{1}{6} a^{9} - \frac{1}{12} a^{8} + \frac{23}{90} a^{7} + \frac{73}{180} a^{6} - \frac{5}{18} a^{5} - \frac{23}{60} a^{4} - \frac{1}{30} a^{3} + \frac{1}{5} a^{2} + \frac{7}{90} a + \frac{89}{180}$, $\frac{1}{190041037664984167694273318723376202126292381328540} a^{15} - \frac{76394867370243868891538525876686657754028295423}{38008207532996833538854663744675240425258476265708} a^{14} + \frac{50426215032902929253134983997279406799042609538}{47510259416246041923568329680844050531573095332135} a^{13} - \frac{59706515989933784475179508991533990661194952293}{21115670851664907521585924302597355791810264592060} a^{12} - \frac{3734429061495177380855617766770712302954597282957}{190041037664984167694273318723376202126292381328540} a^{11} - \frac{2285930135966201281183077276747353488857347332504}{47510259416246041923568329680844050531573095332135} a^{10} - \frac{39055564681084002069536424760459012371409292828707}{190041037664984167694273318723376202126292381328540} a^{9} + \frac{5390647980215315111686165153315774943312877909869}{63347012554994722564757772907792067375430793776180} a^{8} - \frac{15474705467930995295131064924532664368030486061435}{38008207532996833538854663744675240425258476265708} a^{7} + \frac{21859932961910185028923757255893420998616304379779}{47510259416246041923568329680844050531573095332135} a^{6} + \frac{92642457524065688766493543520660307433956257810999}{190041037664984167694273318723376202126292381328540} a^{5} + \frac{4980188204828871388846219139835175147541671551829}{38008207532996833538854663744675240425258476265708} a^{4} - \frac{15337556794950817553181620608274840413601143652}{49233429446887090076236611068232176716656057339} a^{3} + \frac{13522475601029671869447339240146882846684772983957}{38008207532996833538854663744675240425258476265708} a^{2} - \frac{139698198794137828074925791995721865727806818353}{328222862979247267174910740454881178111040382260} a - \frac{2735385560850365049585497865358979141295847994563}{10557835425832453760792962151298677895905132296030}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 476480610.902 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2048 |
| The 65 conjugacy class representatives for t16n1360 are not computed |
| Character table for t16n1360 is not computed |
Intermediate fields
| \(\Q(\sqrt{10}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{2}, \sqrt{5})\), 8.8.1948160000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 761 | Data not computed | ||||||