Properties

Label 16.4.10669986875...9729.1
Degree $16$
Signature $[4, 6]$
Discriminant $7^{2}\cdot 17^{4}\cdot 97^{4}\cdot 131^{4}$
Root discriminant $27.50$
Ramified primes $7, 17, 97, 131$
Class number $2$
Class group $[2]$
Galois group 16T1938

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -5, 3, -2, -27, -49, 177, -201, -25, 251, -191, 8, 22, 12, -7, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 2*x^15 - 7*x^14 + 12*x^13 + 22*x^12 + 8*x^11 - 191*x^10 + 251*x^9 - 25*x^8 - 201*x^7 + 177*x^6 - 49*x^5 - 27*x^4 - 2*x^3 + 3*x^2 - 5*x - 1)
 
gp: K = bnfinit(x^16 - 2*x^15 - 7*x^14 + 12*x^13 + 22*x^12 + 8*x^11 - 191*x^10 + 251*x^9 - 25*x^8 - 201*x^7 + 177*x^6 - 49*x^5 - 27*x^4 - 2*x^3 + 3*x^2 - 5*x - 1, 1)
 

Normalized defining polynomial

\( x^{16} - 2 x^{15} - 7 x^{14} + 12 x^{13} + 22 x^{12} + 8 x^{11} - 191 x^{10} + 251 x^{9} - 25 x^{8} - 201 x^{7} + 177 x^{6} - 49 x^{5} - 27 x^{4} - 2 x^{3} + 3 x^{2} - 5 x - 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(106699868755982293009729=7^{2}\cdot 17^{4}\cdot 97^{4}\cdot 131^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $27.50$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $7, 17, 97, 131$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{67335617652382} a^{15} + \frac{30128577054397}{67335617652382} a^{14} - \frac{2256342969518}{33667808826191} a^{13} + \frac{946472942674}{33667808826191} a^{12} - \frac{5386086900961}{33667808826191} a^{11} + \frac{7424349163854}{33667808826191} a^{10} + \frac{16965545760107}{67335617652382} a^{9} + \frac{8105607294525}{33667808826191} a^{8} + \frac{23061786139461}{67335617652382} a^{7} + \frac{9148191243627}{33667808826191} a^{6} - \frac{18126398679215}{67335617652382} a^{5} - \frac{9511668494716}{33667808826191} a^{4} + \frac{16670529539415}{67335617652382} a^{3} - \frac{27565736099145}{67335617652382} a^{2} - \frac{7588852168252}{33667808826191} a - \frac{18705320427215}{67335617652382}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 281887.193959 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1938:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 2580480
The 62 conjugacy class representatives for t16n1938 are not computed
Character table for t16n1938 is not computed

Intermediate fields

8.8.46664208361.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.14.0.1}{14} }{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }$ ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/5.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ R ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }$ ${\href{/LocalNumberField/13.14.0.1}{14} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ R ${\href{/LocalNumberField/19.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }$ ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.6.0.1}{6} }$ ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }$ ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }$ ${\href{/LocalNumberField/53.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/59.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$7$7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.6.0.1$x^{6} + 3 x^{2} - x + 5$$1$$6$$0$$C_6$$[\ ]^{6}$
7.6.0.1$x^{6} + 3 x^{2} - x + 5$$1$$6$$0$$C_6$$[\ ]^{6}$
$17$17.4.0.1$x^{4} - x + 11$$1$$4$$0$$C_4$$[\ ]^{4}$
17.4.2.2$x^{4} - 17 x^{2} + 867$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
17.4.0.1$x^{4} - x + 11$$1$$4$$0$$C_4$$[\ ]^{4}$
17.4.2.2$x^{4} - 17 x^{2} + 867$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
$97$97.6.4.3$x^{6} + 873 x^{3} + 235225$$3$$2$$4$$C_6$$[\ ]_{3}^{2}$
97.10.0.1$x^{10} - 2 x + 57$$1$$10$$0$$C_{10}$$[\ ]^{10}$
$131$131.2.1.2$x^{2} + 393$$2$$1$$1$$C_2$$[\ ]_{2}$
131.2.1.2$x^{2} + 393$$2$$1$$1$$C_2$$[\ ]_{2}$
131.4.0.1$x^{4} - x + 6$$1$$4$$0$$C_4$$[\ ]^{4}$
131.4.0.1$x^{4} - x + 6$$1$$4$$0$$C_4$$[\ ]^{4}$
131.4.2.1$x^{4} + 3537 x^{2} + 3363556$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$