Normalized defining polynomial
\( x^{16} - 10 x^{14} - 102 x^{13} + 31 x^{12} + 680 x^{11} + 2855 x^{10} - 782 x^{9} - 8865 x^{8} - 18904 x^{7} + 12775 x^{6} + 25262 x^{5} + 2222 x^{4} - 1564 x^{3} + 1601 x^{2} + 340 x + 16 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1064377371083527836156872521=17^{14}\cdot 43^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $48.89$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{4} a$, $\frac{1}{4} a^{7} - \frac{1}{4} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{9} - \frac{1}{8} a^{7} - \frac{1}{8} a^{6} - \frac{1}{8} a^{5} - \frac{1}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{8} a^{2}$, $\frac{1}{40} a^{10} - \frac{1}{40} a^{9} - \frac{1}{40} a^{8} + \frac{1}{10} a^{7} - \frac{1}{20} a^{6} + \frac{1}{20} a^{5} - \frac{3}{40} a^{4} - \frac{17}{40} a^{3} + \frac{19}{40} a^{2} + \frac{1}{20} a + \frac{1}{5}$, $\frac{1}{160} a^{11} + \frac{1}{160} a^{10} + \frac{1}{80} a^{9} + \frac{1}{80} a^{8} + \frac{11}{160} a^{7} - \frac{17}{160} a^{6} + \frac{3}{80} a^{5} - \frac{9}{80} a^{4} - \frac{15}{32} a^{3} + \frac{9}{32} a^{2} - \frac{17}{40} a + \frac{1}{10}$, $\frac{1}{480} a^{12} - \frac{1}{480} a^{11} - \frac{1}{120} a^{10} + \frac{11}{240} a^{9} - \frac{29}{480} a^{8} + \frac{1}{96} a^{7} - \frac{13}{120} a^{6} + \frac{11}{240} a^{5} + \frac{11}{160} a^{4} - \frac{59}{160} a^{3} - \frac{67}{240} a^{2} + \frac{3}{10} a - \frac{7}{15}$, $\frac{1}{960} a^{13} - \frac{1}{480} a^{11} - \frac{1}{320} a^{10} - \frac{37}{960} a^{9} + \frac{1}{160} a^{8} - \frac{5}{96} a^{7} + \frac{9}{320} a^{6} + \frac{17}{192} a^{5} + \frac{29}{160} a^{4} - \frac{1}{120} a^{3} + \frac{229}{960} a^{2} + \frac{97}{240} a - \frac{23}{60}$, $\frac{1}{698880} a^{14} - \frac{103}{232960} a^{13} + \frac{61}{116480} a^{12} - \frac{163}{139776} a^{11} + \frac{19}{8320} a^{10} + \frac{39371}{698880} a^{9} - \frac{771}{11648} a^{8} - \frac{10873}{139776} a^{7} + \frac{1129}{34944} a^{6} + \frac{2999}{99840} a^{5} - \frac{5449}{26880} a^{4} - \frac{2323}{19968} a^{3} - \frac{7701}{46592} a^{2} + \frac{51817}{174720} a + \frac{16553}{43680}$, $\frac{1}{11652717672960} a^{15} - \frac{1533097}{2330543534592} a^{14} + \frac{594115219}{5826358836480} a^{13} - \frac{2274475327}{11652717672960} a^{12} - \frac{8598114463}{2913179418240} a^{11} - \frac{98577756533}{11652717672960} a^{10} + \frac{488823131}{83233697664} a^{9} + \frac{829655214851}{11652717672960} a^{8} - \frac{19673223089}{224090724480} a^{7} + \frac{483884043499}{3884239224320} a^{6} - \frac{470262342507}{1942119612160} a^{5} - \frac{1506159909673}{11652717672960} a^{4} + \frac{101495206587}{298787632640} a^{3} + \frac{1026178492771}{2913179418240} a^{2} - \frac{199328443021}{728294854560} a - \frac{13687518227}{91036856820}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 40031730.583 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $D_4:C_4$ |
| Character table for $D_4:C_4$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.2.211259.1, 4.4.4913.1, 4.2.12427.1, 8.2.32624796874211.1, 8.2.32624796874211.2, 8.4.44630365081.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 17 | Data not computed | ||||||
| $43$ | 43.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 43.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 43.4.2.1 | $x^{4} + 215 x^{2} + 16641$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 43.4.2.1 | $x^{4} + 215 x^{2} + 16641$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 43.4.2.1 | $x^{4} + 215 x^{2} + 16641$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |