Normalized defining polynomial
\( x^{16} - x^{15} - 3 x^{14} + 8 x^{13} - x^{12} + 34 x^{10} - 5 x^{9} + 20 x^{8} + 54 x^{7} - 28 x^{6} + 69 x^{5} + 72 x^{4} - 22 x^{3} - 70 x^{2} + 42 x - 19 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-960464752179926171875=-\,5^{8}\cdot 71^{3}\cdot 1901^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $20.48$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 71, 1901$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{17} a^{14} - \frac{5}{17} a^{12} + \frac{3}{17} a^{11} - \frac{5}{17} a^{10} + \frac{6}{17} a^{9} - \frac{1}{17} a^{8} - \frac{1}{17} a^{7} + \frac{4}{17} a^{6} - \frac{8}{17} a^{5} + \frac{7}{17} a^{4} + \frac{7}{17} a^{3} - \frac{3}{17} a^{2} - \frac{5}{17} a - \frac{1}{17}$, $\frac{1}{4442373665767933} a^{15} - \frac{54060724818875}{4442373665767933} a^{14} + \frac{1600608939764145}{4442373665767933} a^{13} - \frac{1504765553611114}{4442373665767933} a^{12} + \frac{1392379324971132}{4442373665767933} a^{11} + \frac{642187085375062}{4442373665767933} a^{10} + \frac{803508702617433}{4442373665767933} a^{9} - \frac{1310715580927748}{4442373665767933} a^{8} - \frac{237571196114455}{634624809395419} a^{7} - \frac{1537462386814881}{4442373665767933} a^{6} + \frac{229663277747863}{4442373665767933} a^{5} - \frac{1438541685912567}{4442373665767933} a^{4} - \frac{1722807248470622}{4442373665767933} a^{3} - \frac{1286752715357093}{4442373665767933} a^{2} - \frac{22084376673049}{261316097986349} a - \frac{1947367702432309}{4442373665767933}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7380.47762635 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 4608 |
| The 44 conjugacy class representatives for t16n1651 |
| Character table for t16n1651 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 8.6.84356875.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Arithmetically equvalently siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $16$ | $16$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | $16$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | $16$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 71 | Data not computed | ||||||
| 1901 | Data not computed | ||||||