Normalized defining polynomial
\( x^{16} - 8 x^{15} + 30 x^{14} - 29 x^{13} - 245 x^{12} + 581 x^{11} + 2744 x^{10} - 28528 x^{9} + 111413 x^{8} - 281217 x^{7} + 494529 x^{6} - 612816 x^{5} + 601056 x^{4} - 485575 x^{3} + 13789 x^{2} + 297312 x - 142336 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-889185000234066487453260499987=-\,41^{15}\cdot 83^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $74.44$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $41, 83$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{6} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{7} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{8} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{9} - \frac{1}{2} a^{4}$, $\frac{1}{1268657268279730636910480324869571442996448} a^{15} + \frac{6773967913826583004461773983212168806803}{158582158534966329613810040608696430374556} a^{14} - \frac{28286383586592646364896908317778560248201}{634328634139865318455240162434785721498224} a^{13} - \frac{32414533212477025473005273652664938560909}{1268657268279730636910480324869571442996448} a^{12} - \frac{217474002814048619164563661940446943330437}{1268657268279730636910480324869571442996448} a^{11} + \frac{364294242666447205086849360348568564328805}{1268657268279730636910480324869571442996448} a^{10} - \frac{66955932186638220255463178816264112686413}{158582158534966329613810040608696430374556} a^{9} - \frac{14937005469849660899739252036732230465142}{39645539633741582403452510152174107593639} a^{8} - \frac{75113295945109827285264345531924431348635}{1268657268279730636910480324869571442996448} a^{7} + \frac{599232730669860353138247989146856151527567}{1268657268279730636910480324869571442996448} a^{6} - \frac{46465157433362515138378812370749412373471}{1268657268279730636910480324869571442996448} a^{5} + \frac{31662542962220783725068586695001759427401}{79291079267483164806905020304348215187278} a^{4} - \frac{12514052638318597201067767069592366142597}{79291079267483164806905020304348215187278} a^{3} + \frac{292757219014094301098306376611102767859177}{1268657268279730636910480324869571442996448} a^{2} + \frac{122153967880237061637335609618550001958029}{1268657268279730636910480324869571442996448} a + \frac{14513509313508836570623614038999505967043}{39645539633741582403452510152174107593639}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 556518262.188 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 34 conjugacy class representatives for t16n1251 |
| Character table for t16n1251 is not computed |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.4.68921.1, 8.6.16164604732123.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Arithmetically equvalently siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{2}$ | $16$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | $16$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | $16$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{6}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 41 | Data not computed | ||||||
| $83$ | $\Q_{83}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{83}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{83}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{83}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{83}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{83}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 83.2.1.2 | $x^{2} + 249$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 83.2.1.2 | $x^{2} + 249$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 83.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 83.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 83.2.1.2 | $x^{2} + 249$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |