Properties

Label 16.2.88918500023...9987.2
Degree $16$
Signature $[2, 7]$
Discriminant $-\,41^{15}\cdot 83^{3}$
Root discriminant $74.44$
Ramified primes $41, 83$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 16T1251

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-142336, 297312, 13789, -485575, 601056, -612816, 494529, -281217, 111413, -28528, 2744, 581, -245, -29, 30, -8, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 8*x^15 + 30*x^14 - 29*x^13 - 245*x^12 + 581*x^11 + 2744*x^10 - 28528*x^9 + 111413*x^8 - 281217*x^7 + 494529*x^6 - 612816*x^5 + 601056*x^4 - 485575*x^3 + 13789*x^2 + 297312*x - 142336)
 
gp: K = bnfinit(x^16 - 8*x^15 + 30*x^14 - 29*x^13 - 245*x^12 + 581*x^11 + 2744*x^10 - 28528*x^9 + 111413*x^8 - 281217*x^7 + 494529*x^6 - 612816*x^5 + 601056*x^4 - 485575*x^3 + 13789*x^2 + 297312*x - 142336, 1)
 

Normalized defining polynomial

\( x^{16} - 8 x^{15} + 30 x^{14} - 29 x^{13} - 245 x^{12} + 581 x^{11} + 2744 x^{10} - 28528 x^{9} + 111413 x^{8} - 281217 x^{7} + 494529 x^{6} - 612816 x^{5} + 601056 x^{4} - 485575 x^{3} + 13789 x^{2} + 297312 x - 142336 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[2, 7]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-889185000234066487453260499987=-\,41^{15}\cdot 83^{3}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $74.44$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $41, 83$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{6} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{7} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{8} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{9} - \frac{1}{2} a^{4}$, $\frac{1}{1268657268279730636910480324869571442996448} a^{15} + \frac{6773967913826583004461773983212168806803}{158582158534966329613810040608696430374556} a^{14} - \frac{28286383586592646364896908317778560248201}{634328634139865318455240162434785721498224} a^{13} - \frac{32414533212477025473005273652664938560909}{1268657268279730636910480324869571442996448} a^{12} - \frac{217474002814048619164563661940446943330437}{1268657268279730636910480324869571442996448} a^{11} + \frac{364294242666447205086849360348568564328805}{1268657268279730636910480324869571442996448} a^{10} - \frac{66955932186638220255463178816264112686413}{158582158534966329613810040608696430374556} a^{9} - \frac{14937005469849660899739252036732230465142}{39645539633741582403452510152174107593639} a^{8} - \frac{75113295945109827285264345531924431348635}{1268657268279730636910480324869571442996448} a^{7} + \frac{599232730669860353138247989146856151527567}{1268657268279730636910480324869571442996448} a^{6} - \frac{46465157433362515138378812370749412373471}{1268657268279730636910480324869571442996448} a^{5} + \frac{31662542962220783725068586695001759427401}{79291079267483164806905020304348215187278} a^{4} - \frac{12514052638318597201067767069592366142597}{79291079267483164806905020304348215187278} a^{3} + \frac{292757219014094301098306376611102767859177}{1268657268279730636910480324869571442996448} a^{2} + \frac{122153967880237061637335609618550001958029}{1268657268279730636910480324869571442996448} a + \frac{14513509313508836570623614038999505967043}{39645539633741582403452510152174107593639}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $8$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 556518262.188 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1251:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 1024
The 34 conjugacy class representatives for t16n1251
Character table for t16n1251 is not computed

Intermediate fields

\(\Q(\sqrt{41}) \), 4.4.68921.1, 8.6.16164604732123.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed
Arithmetically equvalently siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{2}$ $16$ ${\href{/LocalNumberField/5.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ $16$ $16$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ $16$ ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ $16$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{6}$ R ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
41Data not computed
$83$$\Q_{83}$$x + 3$$1$$1$$0$Trivial$[\ ]$
$\Q_{83}$$x + 3$$1$$1$$0$Trivial$[\ ]$
$\Q_{83}$$x + 3$$1$$1$$0$Trivial$[\ ]$
$\Q_{83}$$x + 3$$1$$1$$0$Trivial$[\ ]$
$\Q_{83}$$x + 3$$1$$1$$0$Trivial$[\ ]$
$\Q_{83}$$x + 3$$1$$1$$0$Trivial$[\ ]$
83.2.1.2$x^{2} + 249$$2$$1$$1$$C_2$$[\ ]_{2}$
83.2.1.2$x^{2} + 249$$2$$1$$1$$C_2$$[\ ]_{2}$
83.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
83.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
83.2.1.2$x^{2} + 249$$2$$1$$1$$C_2$$[\ ]_{2}$