Normalized defining polynomial
\( x^{16} - 2 x^{15} + x^{14} - 3 x^{12} - 2 x^{11} + 19 x^{10} - 4 x^{9} - 37 x^{8} + 28 x^{7} + 19 x^{6} + \cdots + 1 \)
Invariants
Degree: | $16$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[2, 7]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(-80157081600000000\) \(\medspace = -\,2^{24}\cdot 3^{4}\cdot 5^{8}\cdot 151\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(11.39\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | not computed | ||
Ramified primes: | \(2\), \(3\), \(5\), \(151\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{-151}) \) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3}a^{12}-\frac{1}{3}a^{11}+\frac{1}{3}a^{10}-\frac{1}{3}a^{9}+\frac{1}{3}a^{6}+\frac{1}{3}a^{5}+\frac{1}{3}a^{4}-\frac{1}{3}a^{3}-\frac{1}{3}a^{2}-\frac{1}{3}a+\frac{1}{3}$, $\frac{1}{3}a^{13}-\frac{1}{3}a^{9}+\frac{1}{3}a^{7}-\frac{1}{3}a^{6}-\frac{1}{3}a^{5}+\frac{1}{3}a^{3}+\frac{1}{3}a^{2}+\frac{1}{3}$, $\frac{1}{9}a^{14}-\frac{1}{9}a^{12}+\frac{1}{9}a^{11}+\frac{1}{9}a^{10}-\frac{2}{9}a^{9}+\frac{4}{9}a^{8}-\frac{4}{9}a^{7}+\frac{1}{9}a^{6}-\frac{4}{9}a^{5}-\frac{1}{3}a^{4}-\frac{4}{9}a^{3}+\frac{4}{9}a^{2}+\frac{2}{9}a+\frac{2}{9}$, $\frac{1}{1251}a^{15}+\frac{55}{1251}a^{14}-\frac{61}{1251}a^{13}-\frac{47}{417}a^{12}+\frac{161}{1251}a^{11}-\frac{277}{1251}a^{10}-\frac{202}{1251}a^{9}+\frac{33}{139}a^{8}+\frac{39}{139}a^{7}-\frac{40}{417}a^{6}+\frac{407}{1251}a^{5}+\frac{95}{1251}a^{4}-\frac{43}{417}a^{2}-\frac{548}{1251}a-\frac{100}{1251}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $8$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{1745}{1251}a^{15}-\frac{4661}{1251}a^{14}+\frac{6145}{1251}a^{13}-\frac{6131}{1251}a^{12}-\frac{28}{139}a^{11}-\frac{1457}{417}a^{10}+\frac{11171}{417}a^{9}-\frac{34399}{1251}a^{8}-\frac{19538}{1251}a^{7}+\frac{65681}{1251}a^{6}-\frac{46501}{1251}a^{5}-\frac{12284}{1251}a^{4}+\frac{265}{9}a^{3}-\frac{13825}{1251}a^{2}-\frac{364}{139}a+\frac{3698}{1251}$, $\frac{229}{139}a^{15}-\frac{4517}{1251}a^{14}+\frac{1183}{417}a^{13}-\frac{2593}{1251}a^{12}-\frac{3725}{1251}a^{11}-\frac{4472}{1251}a^{10}+\frac{39181}{1251}a^{9}-\frac{15746}{1251}a^{8}-\frac{59437}{1251}a^{7}+\frac{54727}{1251}a^{6}+\frac{8858}{1251}a^{5}-\frac{9934}{417}a^{4}+\frac{110}{9}a^{3}-\frac{1352}{1251}a^{2}-\frac{2833}{1251}a+\frac{1427}{1251}$, $\frac{998}{1251}a^{15}-\frac{1544}{1251}a^{14}+\frac{4}{1251}a^{13}+\frac{367}{1251}a^{12}-\frac{325}{139}a^{11}-\frac{337}{139}a^{10}+\frac{2049}{139}a^{9}+\frac{5618}{1251}a^{8}-\frac{38624}{1251}a^{7}+\frac{7703}{1251}a^{6}+\frac{28940}{1251}a^{5}-\frac{17780}{1251}a^{4}-\frac{23}{9}a^{3}+\frac{8312}{1251}a^{2}-\frac{860}{417}a+\frac{419}{1251}$, $\frac{343}{417}a^{15}-\frac{317}{417}a^{14}-\frac{212}{417}a^{13}+\frac{148}{417}a^{12}-\frac{1211}{417}a^{11}-\frac{488}{139}a^{10}+\frac{4940}{417}a^{9}+\frac{1709}{139}a^{8}-\frac{11101}{417}a^{7}-\frac{1684}{417}a^{6}+\frac{8107}{417}a^{5}-\frac{629}{139}a^{4}-\frac{8}{3}a^{3}+\frac{928}{417}a^{2}-\frac{12}{139}a+\frac{311}{417}$, $a$, $\frac{16}{9}a^{15}-5a^{14}+\frac{50}{9}a^{13}-\frac{41}{9}a^{12}-\frac{8}{9}a^{11}-\frac{26}{9}a^{10}+\frac{334}{9}a^{9}-\frac{316}{9}a^{8}-\frac{368}{9}a^{7}+\frac{650}{9}a^{6}-18a^{5}-\frac{220}{9}a^{4}+\frac{196}{9}a^{3}-\frac{52}{9}a^{2}-\frac{10}{9}a$, $\frac{96}{139}a^{15}-\frac{3076}{1251}a^{14}+\frac{399}{139}a^{13}-\frac{2006}{1251}a^{12}-\frac{730}{1251}a^{11}+\frac{725}{1251}a^{10}+\frac{20072}{1251}a^{9}-\frac{28342}{1251}a^{8}-\frac{26027}{1251}a^{7}+\frac{60062}{1251}a^{6}-\frac{11003}{1251}a^{5}-\frac{9892}{417}a^{4}+\frac{139}{9}a^{3}-\frac{256}{1251}a^{2}-\frac{4625}{1251}a+\frac{475}{1251}$, $\frac{5}{139}a^{15}-\frac{305}{1251}a^{14}+\frac{197}{417}a^{13}-\frac{229}{1251}a^{12}-\frac{122}{1251}a^{11}+\frac{601}{1251}a^{10}+\frac{1057}{1251}a^{9}-\frac{5261}{1251}a^{8}+\frac{227}{1251}a^{7}+\frac{10585}{1251}a^{6}-\frac{6844}{1251}a^{5}-\frac{2189}{417}a^{4}+\frac{71}{9}a^{3}-\frac{1913}{1251}a^{2}-\frac{3532}{1251}a+\frac{1616}{1251}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 69.1847935897 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{7}\cdot 69.1847935897 \cdot 1}{2\cdot\sqrt{80157081600000000}}\cr\approx \mathstrut & 0.188942116240 \end{aligned}\]
Galois group
$C_2\wr D_4.C_2$ (as 16T1577):
A solvable group of order 4096 |
The 88 conjugacy class representatives for $C_2\wr D_4.C_2$ |
Character table for $C_2\wr D_4.C_2$ |
Intermediate fields
\(\Q(\sqrt{2}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{10}) \), \(\Q(\sqrt{2}, \sqrt{5})\), 8.4.23040000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 16 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Minimal sibling: | 16.4.1344857702400000000.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | R | ${\href{/padicField/7.4.0.1}{4} }^{3}{,}\,{\href{/padicField/7.2.0.1}{2} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }^{4}$ | ${\href{/padicField/13.8.0.1}{8} }{,}\,{\href{/padicField/13.4.0.1}{4} }^{2}$ | ${\href{/padicField/17.4.0.1}{4} }^{4}$ | ${\href{/padicField/19.4.0.1}{4} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }^{4}$ | ${\href{/padicField/23.8.0.1}{8} }{,}\,{\href{/padicField/23.4.0.1}{4} }^{2}$ | ${\href{/padicField/29.8.0.1}{8} }^{2}$ | ${\href{/padicField/31.4.0.1}{4} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }^{4}$ | ${\href{/padicField/37.4.0.1}{4} }^{4}$ | ${\href{/padicField/41.4.0.1}{4} }^{2}{,}\,{\href{/padicField/41.2.0.1}{2} }^{3}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.4.0.1}{4} }^{4}$ | ${\href{/padicField/47.8.0.1}{8} }^{2}$ | ${\href{/padicField/53.8.0.1}{8} }{,}\,{\href{/padicField/53.4.0.1}{4} }^{2}$ | ${\href{/padicField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | Deg $16$ | $2$ | $8$ | $24$ | |||
\(3\) | 3.4.2.2 | $x^{4} - 6 x^{3} + 12 x^{2} + 36 x + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
3.4.2.2 | $x^{4} - 6 x^{3} + 12 x^{2} + 36 x + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
3.8.0.1 | $x^{8} + 2 x^{5} + x^{4} + 2 x^{2} + 2 x + 2$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
\(5\) | 5.16.8.1 | $x^{16} + 160 x^{15} + 11240 x^{14} + 453600 x^{13} + 11536702 x^{12} + 190484240 x^{11} + 2020220586 x^{10} + 13041178608 x^{9} + 45239382035 x^{8} + 65384309200 x^{7} + 52374358166 x^{6} + 35488260768 x^{5} + 46408266743 x^{4} + 66345171264 x^{3} + 136057926318 x^{2} + 159173865296 x + 74196697609$ | $2$ | $8$ | $8$ | $C_8\times C_2$ | $[\ ]_{2}^{8}$ |
\(151\) | $\Q_{151}$ | $x + 145$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{151}$ | $x + 145$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{151}$ | $x + 145$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{151}$ | $x + 145$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{151}$ | $x + 145$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{151}$ | $x + 145$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{151}$ | $x + 145$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{151}$ | $x + 145$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
151.2.0.1 | $x^{2} + 149 x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
151.2.1.1 | $x^{2} + 453$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
151.2.0.1 | $x^{2} + 149 x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
151.2.0.1 | $x^{2} + 149 x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |