Normalized defining polynomial
\( x^{16} - 5 x^{15} + 22 x^{14} - 83 x^{13} + 392 x^{12} - 905 x^{11} + 3573 x^{10} - 12980 x^{9} + 29369 x^{8} - 70843 x^{7} + 155388 x^{6} - 103855 x^{5} - 343558 x^{4} + 1036385 x^{3} - 1038695 x^{2} + 244766 x + 237988 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-79147628529732436014211365423=-\,3^{8}\cdot 47^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $64.00$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{3}$, $\frac{1}{20} a^{10} + \frac{1}{10} a^{9} - \frac{1}{10} a^{8} - \frac{1}{10} a^{7} - \frac{1}{5} a^{6} - \frac{3}{20} a^{4} - \frac{3}{10} a^{3} + \frac{3}{10} a^{2} - \frac{1}{5} a - \frac{2}{5}$, $\frac{1}{80} a^{11} + \frac{1}{20} a^{9} + \frac{7}{80} a^{8} - \frac{1}{8} a^{7} + \frac{1}{10} a^{6} - \frac{13}{80} a^{5} - \frac{1}{4} a^{4} - \frac{2}{5} a^{3} + \frac{29}{80} a^{2} - \frac{1}{8} a - \frac{1}{20}$, $\frac{1}{480} a^{12} - \frac{1}{160} a^{11} + \frac{1}{60} a^{10} + \frac{1}{160} a^{9} + \frac{7}{160} a^{8} - \frac{3}{16} a^{7} + \frac{67}{480} a^{6} - \frac{7}{160} a^{5} - \frac{1}{20} a^{4} - \frac{33}{160} a^{3} - \frac{13}{480} a^{2} - \frac{5}{16} a + \frac{11}{24}$, $\frac{1}{4800} a^{13} - \frac{1}{1200} a^{12} - \frac{13}{4800} a^{11} + \frac{23}{960} a^{10} + \frac{27}{800} a^{9} + \frac{187}{1600} a^{8} + \frac{1117}{4800} a^{7} + \frac{11}{120} a^{6} - \frac{137}{1600} a^{5} + \frac{19}{320} a^{4} - \frac{53}{2400} a^{3} - \frac{953}{4800} a^{2} - \frac{203}{480} a - \frac{31}{1200}$, $\frac{1}{57600} a^{14} + \frac{1}{11520} a^{13} - \frac{29}{57600} a^{12} - \frac{31}{28800} a^{11} - \frac{83}{57600} a^{10} + \frac{1333}{19200} a^{9} - \frac{67}{28800} a^{8} + \frac{9173}{57600} a^{7} + \frac{3449}{57600} a^{6} + \frac{187}{3200} a^{5} + \frac{1499}{57600} a^{4} - \frac{2447}{57600} a^{3} - \frac{21907}{57600} a^{2} - \frac{4217}{28800} a - \frac{7099}{14400}$, $\frac{1}{273351078619657534896190617600} a^{15} + \frac{20427723416539217209273}{3037234206885083721068784640} a^{14} + \frac{245112258582579223341571}{7593085517212709302671961600} a^{13} + \frac{8549010400387964106885953}{273351078619657534896190617600} a^{12} - \frac{1580749259852243108258530153}{273351078619657534896190617600} a^{11} - \frac{82639175376895661486053931}{17084442413728595931011913600} a^{10} - \frac{24899778137495534050949407259}{273351078619657534896190617600} a^{9} - \frac{2765035676898342039664493059}{91117026206552511632063539200} a^{8} - \frac{14005190879311673695021010023}{136675539309828767448095308800} a^{7} - \frac{50048648774418921667852711309}{273351078619657534896190617600} a^{6} + \frac{21431881526891024350629618809}{273351078619657534896190617600} a^{5} - \frac{2209355743913045653067038513}{11389628275819063954007942400} a^{4} + \frac{7142865933148361436363418403}{45558513103276255816031769600} a^{3} - \frac{3068790305631705167924967569}{273351078619657534896190617600} a^{2} - \frac{58944553325566720655968215763}{136675539309828767448095308800} a + \frac{2003637073955502744074847397}{13667553930982876744809530880}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2086348151.54 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $D_{16}$ |
| Character table for $D_{16}$ |
Intermediate fields
| \(\Q(\sqrt{141}) \), 4.2.934407.1, 8.2.41036472757503.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | $16$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | $16$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | $16$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | $16$ | R | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 47 | Data not computed | ||||||