Normalized defining polynomial
\( x^{16} - 17 x^{14} - 17 x^{13} + 85 x^{12} + 255 x^{11} + 255 x^{10} - 1241 x^{9} - 4845 x^{8} + 3757 x^{7} + 9639 x^{6} + 19125 x^{5} - 8772 x^{4} - 92531 x^{3} - 33830 x^{2} + 328440 x - 239904 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-778059858262058848230673812851=-\,17^{15}\cdot 43^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $73.82$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{12} a^{8} - \frac{1}{6} a^{7} - \frac{1}{6} a^{6} - \frac{1}{6} a^{5} - \frac{1}{6} a^{4} - \frac{1}{6} a^{3} + \frac{1}{12} a^{2} + \frac{1}{3} a$, $\frac{1}{12} a^{9} + \frac{1}{4} a^{3} - \frac{1}{3} a$, $\frac{1}{60} a^{10} + \frac{1}{30} a^{9} + \frac{1}{30} a^{8} + \frac{1}{30} a^{7} + \frac{2}{15} a^{6} + \frac{2}{15} a^{5} - \frac{7}{60} a^{4} - \frac{11}{30} a^{3} - \frac{1}{30} a^{2} + \frac{2}{5} a + \frac{2}{5}$, $\frac{1}{120} a^{11} - \frac{1}{60} a^{9} + \frac{1}{40} a^{8} - \frac{1}{20} a^{7} + \frac{1}{10} a^{6} + \frac{9}{40} a^{5} + \frac{1}{10} a^{4} - \frac{29}{60} a^{3} + \frac{11}{40} a^{2} + \frac{13}{60} a - \frac{2}{5}$, $\frac{1}{360} a^{12} - \frac{1}{360} a^{11} - \frac{11}{360} a^{9} - \frac{1}{72} a^{8} + \frac{11}{180} a^{7} - \frac{89}{360} a^{6} + \frac{1}{360} a^{5} - \frac{1}{15} a^{4} - \frac{13}{360} a^{3} - \frac{11}{360} a^{2} - \frac{7}{20} a - \frac{2}{5}$, $\frac{1}{360} a^{13} - \frac{1}{360} a^{11} + \frac{1}{360} a^{10} + \frac{1}{45} a^{9} + \frac{11}{360} a^{8} + \frac{17}{360} a^{7} + \frac{17}{90} a^{6} - \frac{47}{360} a^{5} - \frac{61}{360} a^{4} + \frac{11}{30} a^{3} - \frac{11}{360} a^{2} - \frac{17}{60} a + \frac{2}{5}$, $\frac{1}{181440} a^{14} + \frac{169}{181440} a^{13} - \frac{1}{20160} a^{12} - \frac{691}{181440} a^{11} + \frac{131}{20160} a^{10} + \frac{7517}{181440} a^{9} + \frac{5777}{181440} a^{8} + \frac{1033}{5184} a^{7} - \frac{659}{181440} a^{6} - \frac{35633}{181440} a^{5} + \frac{42809}{181440} a^{4} - \frac{1333}{4032} a^{3} + \frac{3821}{18144} a^{2} + \frac{2389}{7560} a - \frac{31}{90}$, $\frac{1}{3294171342544320} a^{15} - \frac{1263388411}{1647085671272160} a^{14} - \frac{3799276031}{22876189878780} a^{13} + \frac{9755119819}{164708567127216} a^{12} + \frac{22275556565}{9150475951512} a^{11} + \frac{3014153266867}{411771417818040} a^{10} - \frac{68165733109037}{1647085671272160} a^{9} - \frac{18143927825053}{823542835636080} a^{8} + \frac{9436008444979}{82354283563608} a^{7} + \frac{7484325987721}{823542835636080} a^{6} - \frac{18807628721743}{82354283563608} a^{5} - \frac{2624338249031}{45752379757560} a^{4} - \frac{1064418889624519}{3294171342544320} a^{3} - \frac{8022385944445}{109805711418144} a^{2} + \frac{1402836142903}{9150475951512} a + \frac{90518420493}{181557062530}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4535440485.79 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $D_{16}$ |
| Character table for $D_{16}$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.2.211259.1, 8.2.32624796874211.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | $16$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | $16$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | $16$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | $16$ | R | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 17 | Data not computed | ||||||
| 43 | Data not computed | ||||||