Normalized defining polynomial
\( x^{16} - 6 x^{15} + 19 x^{14} - 29 x^{13} + 4 x^{12} + 1659 x^{11} - 13133 x^{10} + 59894 x^{9} - 123455 x^{8} + 87641 x^{7} + 409868 x^{6} + 197569 x^{5} - 1210880 x^{4} - 2883720 x^{3} + 1183464 x^{2} + 2882976 x + 4820096 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-77674857879654074046142123779211=-\,17^{15}\cdot 83^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $98.43$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 83$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{3}$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{9} - \frac{1}{8} a^{4} - \frac{3}{8} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{9} - \frac{1}{8} a^{5} - \frac{3}{8} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{40} a^{12} + \frac{1}{40} a^{11} + \frac{1}{40} a^{10} - \frac{3}{40} a^{9} + \frac{1}{10} a^{8} + \frac{1}{5} a^{7} + \frac{3}{40} a^{6} - \frac{1}{8} a^{5} - \frac{1}{8} a^{4} - \frac{1}{40} a^{3} + \frac{3}{10} a^{2} + \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{40} a^{13} + \frac{1}{40} a^{10} + \frac{1}{20} a^{9} + \frac{1}{10} a^{8} - \frac{1}{8} a^{7} - \frac{1}{5} a^{6} - \frac{1}{40} a^{4} - \frac{1}{20} a^{3} - \frac{1}{10} a^{2} + \frac{1}{10} a + \frac{1}{5}$, $\frac{1}{9440} a^{14} + \frac{63}{9440} a^{13} - \frac{31}{4720} a^{12} - \frac{71}{9440} a^{11} - \frac{107}{9440} a^{10} - \frac{3}{1180} a^{9} + \frac{459}{9440} a^{8} - \frac{1819}{9440} a^{7} + \frac{23}{944} a^{6} + \frac{939}{9440} a^{5} + \frac{323}{1888} a^{4} - \frac{261}{1180} a^{3} + \frac{351}{1180} a^{2} - \frac{107}{1180} a + \frac{4}{59}$, $\frac{1}{8690393507671818628633410045116611611222400} a^{15} + \frac{369297029716718406411943769632415839563}{8690393507671818628633410045116611611222400} a^{14} - \frac{26076496916295902503976429825120247819067}{4345196753835909314316705022558305805611200} a^{13} - \frac{20707943979528418404339301089106232030131}{1738078701534363725726682009023322322244480} a^{12} + \frac{184235992015034343305757303096428403762029}{8690393507671818628633410045116611611222400} a^{11} - \frac{19154653806120210341965030351756118253931}{434519675383590931431670502255830580561120} a^{10} - \frac{625608942485006420506095071109857301666173}{8690393507671818628633410045116611611222400} a^{9} - \frac{737171178462104583553507242628470265706263}{8690393507671818628633410045116611611222400} a^{8} - \frac{850868733536312111104526263569546702398921}{4345196753835909314316705022558305805611200} a^{7} - \frac{644165462909043696687639339242486386405597}{8690393507671818628633410045116611611222400} a^{6} - \frac{82113294612222332782078243353991411213441}{347615740306872745145336401804664464448896} a^{5} - \frac{1712146387005632457260697192889746074427}{20304657728205183711760303843730400960800} a^{4} - \frac{122608102814629124260035143478034351979127}{271574797114744332144794063909894112850700} a^{3} + \frac{177437742939403113619761519066775960039363}{1086299188458977328579176255639576451402800} a^{2} - \frac{219028429968702388747668840090124620731}{5431495942294886642895881278197882257014} a - \frac{30955484265725868974471339211128543059078}{67893699278686083036198515977473528212675}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 29155805986.6 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $D_{16}$ |
| Character table for $D_{16}$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.2.407779.1, 8.2.234626318818651.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{2}$ | $16$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}$ | $16$ | $16$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.1.0.1}{1} }^{16}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 17 | Data not computed | ||||||
| 83 | Data not computed | ||||||