Normalized defining polynomial
\( x^{16} - 47 x^{13} - 470 x^{12} - 705 x^{11} + 11186 x^{10} + 10951 x^{9} - 112706 x^{8} - 82203 x^{7} + 303620 x^{6} + 252484 x^{5} + 91368 x^{4} - 768591 x^{3} - 155335 x^{2} - 17625 x + 52875 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-69542802636157609642914448041743=-\,7^{8}\cdot 47^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $97.76$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{3} a^{8} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{2}$, $\frac{1}{9} a^{11} + \frac{1}{9} a^{9} + \frac{1}{9} a^{7} + \frac{4}{9} a^{6} - \frac{1}{9} a^{5} + \frac{1}{3} a^{4} + \frac{4}{9} a^{3} - \frac{4}{9} a^{2} - \frac{1}{3} a$, $\frac{1}{45} a^{12} + \frac{2}{45} a^{11} + \frac{1}{45} a^{10} - \frac{1}{45} a^{9} - \frac{1}{9} a^{8} + \frac{1}{15} a^{7} + \frac{7}{45} a^{6} + \frac{16}{45} a^{5} - \frac{4}{9} a^{4} - \frac{11}{45} a^{3} - \frac{2}{45} a^{2} + \frac{2}{5} a$, $\frac{1}{135} a^{13} + \frac{2}{135} a^{11} - \frac{2}{15} a^{10} + \frac{17}{135} a^{9} - \frac{17}{135} a^{8} + \frac{7}{45} a^{7} + \frac{52}{135} a^{6} - \frac{19}{45} a^{5} - \frac{61}{135} a^{4} - \frac{4}{27} a^{3} - \frac{58}{135} a^{2} - \frac{22}{45} a - \frac{1}{3}$, $\frac{1}{665145} a^{14} + \frac{1042}{665145} a^{13} + \frac{368}{51165} a^{12} - \frac{245}{133029} a^{11} + \frac{43958}{665145} a^{10} + \frac{7387}{44343} a^{9} - \frac{84398}{665145} a^{8} + \frac{21227}{133029} a^{7} - \frac{145439}{665145} a^{6} - \frac{139873}{665145} a^{5} + \frac{43736}{221715} a^{4} - \frac{1699}{4927} a^{3} - \frac{223396}{665145} a^{2} - \frac{84427}{221715} a - \frac{3421}{14781}$, $\frac{1}{13938362462475524304526233223186378425} a^{15} - \frac{832726458660543805511418710923}{2787672492495104860905246644637275685} a^{14} + \frac{219155233352685870795711109185581}{214436345576546527761942049587482745} a^{13} + \frac{126735722771679080715838196268295493}{13938362462475524304526233223186378425} a^{12} - \frac{2262815729680446765397603251783137}{929224164165034953635082214879091895} a^{11} - \frac{124766205206279313542804983771347514}{929224164165034953635082214879091895} a^{10} - \frac{2070408070755897789987794383785347224}{13938362462475524304526233223186378425} a^{9} + \frac{178313863686462384820794402033486659}{1548706940275058256058470358131819825} a^{8} - \frac{228805681099365453857141902277177936}{13938362462475524304526233223186378425} a^{7} + \frac{6265334153086635312400776964285014847}{13938362462475524304526233223186378425} a^{6} + \frac{18946566261911626013080345770316223}{185844832833006990727016442975818379} a^{5} - \frac{6544236246098544285947468754824334431}{13938362462475524304526233223186378425} a^{4} + \frac{3463225123443000602131550249313496843}{13938362462475524304526233223186378425} a^{3} - \frac{123812540963333952790415316182361344}{733598024340817068659275432799283075} a^{2} + \frac{112109197436867132472006856910671289}{929224164165034953635082214879091895} a - \frac{96305204042376154346061092830003}{4765252123923256172487601101944061}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4950271109.28 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $D_{16}$ |
| Character table for $D_{16}$ |
Intermediate fields
| \(\Q(\sqrt{329}) \), 4.2.5087327.1, 8.2.1216402112231663.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | R | $16$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | $16$ | R | ${\href{/LocalNumberField/53.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 47 | Data not computed | ||||||