Normalized defining polynomial
\( x^{16} - 3x^{14} + x^{12} + 3x^{10} + 2x^{8} - x^{6} - 9x^{4} - 4x^{2} - 1 \)
Invariants
Degree: | $16$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[2, 7]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(-67969704100000000\) \(\medspace = -\,2^{8}\cdot 5^{8}\cdot 29^{4}\cdot 31^{2}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(11.27\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{15/8}5^{1/2}29^{1/2}31^{1/2}\approx 245.92126826496147$ | ||
Ramified primes: | \(2\), \(5\), \(29\), \(31\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{-1}) \) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{2}a^{10}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{2}a^{11}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}$, $\frac{1}{14}a^{12}+\frac{3}{14}a^{10}+\frac{1}{7}a^{8}+\frac{3}{7}a^{6}-\frac{1}{2}a^{5}-\frac{3}{14}a^{4}-\frac{1}{2}a^{3}-\frac{1}{7}a^{2}-\frac{1}{2}a-\frac{5}{14}$, $\frac{1}{14}a^{13}+\frac{3}{14}a^{11}+\frac{1}{7}a^{9}+\frac{3}{7}a^{7}-\frac{1}{2}a^{6}-\frac{3}{14}a^{5}-\frac{1}{2}a^{4}-\frac{1}{7}a^{3}-\frac{1}{2}a^{2}-\frac{5}{14}a$, $\frac{1}{14}a^{14}-\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{3}{7}a^{2}+\frac{1}{14}$, $\frac{1}{14}a^{15}-\frac{1}{2}a^{7}-\frac{1}{2}a^{4}+\frac{1}{14}a^{3}-\frac{1}{2}a^{2}+\frac{1}{14}a-\frac{1}{2}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $8$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $a$, $\frac{5}{14}a^{14}-\frac{15}{14}a^{12}+\frac{2}{7}a^{10}+\frac{19}{14}a^{8}+\frac{4}{7}a^{6}-\frac{2}{7}a^{4}-4a^{2}-\frac{11}{14}$, $\frac{11}{14}a^{15}+\frac{1}{7}a^{14}-\frac{37}{14}a^{13}-\frac{2}{7}a^{12}+\frac{11}{7}a^{11}-\frac{5}{14}a^{10}+\frac{31}{14}a^{9}+\frac{13}{14}a^{8}+\frac{9}{14}a^{7}+\frac{2}{7}a^{6}-\frac{11}{7}a^{5}-\frac{1}{7}a^{4}-\frac{45}{7}a^{3}-\frac{9}{7}a^{2}-a-\frac{13}{14}$, $\frac{1}{2}a^{15}-\frac{1}{14}a^{14}-\frac{3}{2}a^{13}+\frac{2}{7}a^{12}+\frac{1}{2}a^{11}-\frac{1}{7}a^{10}+\frac{3}{2}a^{9}-\frac{3}{7}a^{8}+a^{7}+\frac{3}{14}a^{6}-\frac{1}{2}a^{5}+\frac{1}{7}a^{4}-5a^{3}+\frac{5}{14}a^{2}-\frac{3}{2}a+\frac{1}{2}$, $\frac{11}{14}a^{15}-\frac{19}{7}a^{13}+\frac{13}{7}a^{11}+\frac{29}{14}a^{9}+\frac{3}{14}a^{7}-\frac{19}{14}a^{5}-\frac{81}{14}a^{3}-\frac{1}{7}a$, $\frac{11}{14}a^{15}-\frac{1}{7}a^{14}-\frac{37}{14}a^{13}+\frac{2}{7}a^{12}+\frac{11}{7}a^{11}+\frac{5}{14}a^{10}+\frac{31}{14}a^{9}-\frac{13}{14}a^{8}+\frac{9}{14}a^{7}-\frac{2}{7}a^{6}-\frac{11}{7}a^{5}+\frac{1}{7}a^{4}-\frac{45}{7}a^{3}+\frac{9}{7}a^{2}-a+\frac{13}{14}$, $\frac{2}{7}a^{15}-\frac{1}{7}a^{14}-\frac{5}{7}a^{13}+\frac{1}{2}a^{12}-\frac{1}{7}a^{11}-\frac{1}{2}a^{10}+\frac{15}{14}a^{9}+\frac{5}{7}a^{7}+\frac{1}{7}a^{5}-\frac{39}{14}a^{3}+\frac{5}{14}a^{2}-\frac{15}{7}a-\frac{1}{7}$, $\frac{5}{7}a^{15}+\frac{1}{14}a^{14}-\frac{33}{14}a^{13}-\frac{5}{14}a^{12}+\frac{10}{7}a^{11}+\frac{3}{7}a^{10}+\frac{25}{14}a^{9}+\frac{2}{7}a^{8}+\frac{6}{7}a^{7}-\frac{9}{14}a^{6}-\frac{13}{14}a^{5}+\frac{1}{14}a^{4}-\frac{46}{7}a^{3}-\frac{5}{7}a^{2}-a+\frac{5}{14}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 62.5995169928 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{7}\cdot 62.5995169928 \cdot 1}{2\cdot\sqrt{67969704100000000}}\cr\approx \mathstrut & 0.185653169009 \end{aligned}\]
Galois group
$C_4^4.C_2\wr D_4$ (as 16T1823):
A solvable group of order 32768 |
The 230 conjugacy class representatives for $C_4^4.C_2\wr D_4$ |
Character table for $C_4^4.C_2\wr D_4$ |
Intermediate fields
\(\Q(\sqrt{5}) \), 4.4.725.1, 8.2.16294375.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 16 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | $16$ | R | ${\href{/padicField/7.4.0.1}{4} }^{3}{,}\,{\href{/padicField/7.2.0.1}{2} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }^{3}{,}\,{\href{/padicField/11.1.0.1}{1} }^{2}$ | ${\href{/padicField/13.4.0.1}{4} }^{2}{,}\,{\href{/padicField/13.2.0.1}{2} }^{4}$ | ${\href{/padicField/17.8.0.1}{8} }^{2}$ | ${\href{/padicField/19.4.0.1}{4} }^{3}{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}$ | ${\href{/padicField/23.8.0.1}{8} }{,}\,{\href{/padicField/23.2.0.1}{2} }^{4}$ | R | R | ${\href{/padicField/37.8.0.1}{8} }^{2}$ | ${\href{/padicField/41.4.0.1}{4} }^{2}{,}\,{\href{/padicField/41.2.0.1}{2} }^{4}$ | $16$ | ${\href{/padicField/47.8.0.1}{8} }{,}\,{\href{/padicField/47.4.0.1}{4} }^{2}$ | ${\href{/padicField/53.8.0.1}{8} }{,}\,{\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.2.0.1}{2} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }^{3}{,}\,{\href{/padicField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.8.8.10 | $x^{8} - 6 x^{7} + 36 x^{6} - 60 x^{5} + 88 x^{4} + 136 x^{3} + 336 x^{2} + 400 x + 144$ | $2$ | $4$ | $8$ | $((C_8 : C_2):C_2):C_2$ | $[2, 2, 2, 2]^{4}$ |
2.8.0.1 | $x^{8} + x^{4} + x^{3} + x^{2} + 1$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
\(5\) | 5.16.8.1 | $x^{16} + 160 x^{15} + 11240 x^{14} + 453600 x^{13} + 11536702 x^{12} + 190484240 x^{11} + 2020220586 x^{10} + 13041178608 x^{9} + 45239382035 x^{8} + 65384309200 x^{7} + 52374358166 x^{6} + 35488260768 x^{5} + 46408266743 x^{4} + 66345171264 x^{3} + 136057926318 x^{2} + 159173865296 x + 74196697609$ | $2$ | $8$ | $8$ | $C_8\times C_2$ | $[\ ]_{2}^{8}$ |
\(29\) | 29.4.2.1 | $x^{4} + 1440 x^{3} + 535166 x^{2} + 12071520 x + 1504089$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
29.4.2.1 | $x^{4} + 1440 x^{3} + 535166 x^{2} + 12071520 x + 1504089$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
29.4.0.1 | $x^{4} + 2 x^{2} + 15 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
29.4.0.1 | $x^{4} + 2 x^{2} + 15 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
\(31\) | 31.2.1.2 | $x^{2} + 31$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
31.2.1.2 | $x^{2} + 31$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
31.4.0.1 | $x^{4} + 3 x^{2} + 16 x + 3$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
31.4.0.1 | $x^{4} + 3 x^{2} + 16 x + 3$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
31.4.0.1 | $x^{4} + 3 x^{2} + 16 x + 3$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |