Normalized defining polynomial
\( x^{16} - 4 x^{15} + 50 x^{14} - 166 x^{13} + 803 x^{12} - 2002 x^{11} + 5292 x^{10} - 9793 x^{9} + 16001 x^{8} - 31872 x^{7} + 36105 x^{6} - 121028 x^{5} + 19354 x^{4} - 270587 x^{3} - 246861 x^{2} - 344185 x + 822209 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-652030299991134977060343848687=-\,17^{12}\cdot 47^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $73.01$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{173087950532561024818880562687774138115124467} a^{15} + \frac{23384625545515679773748516922602789980544478}{173087950532561024818880562687774138115124467} a^{14} - \frac{45915673920320431134392583991016849673920750}{173087950532561024818880562687774138115124467} a^{13} - \frac{37596014376186989047867386674121023566294917}{173087950532561024818880562687774138115124467} a^{12} - \frac{24865422432631796087039860052827384478661277}{173087950532561024818880562687774138115124467} a^{11} + \frac{22322465555899985286373176777945949573246164}{173087950532561024818880562687774138115124467} a^{10} + \frac{43624683436201093158387177144152490704418088}{173087950532561024818880562687774138115124467} a^{9} + \frac{63970258295275613758973976515304166458815374}{173087950532561024818880562687774138115124467} a^{8} + \frac{15126895437313329776033916381855071286440868}{173087950532561024818880562687774138115124467} a^{7} - \frac{16880826403818578381465899717798449058600859}{173087950532561024818880562687774138115124467} a^{6} + \frac{22052797660627008792341949866931002758808345}{173087950532561024818880562687774138115124467} a^{5} + \frac{75476408928399029980629940517194314221585912}{173087950532561024818880562687774138115124467} a^{4} + \frac{23284022669204880024313306188437294847910072}{173087950532561024818880562687774138115124467} a^{3} - \frac{61409231931618349989814383533921224373379782}{173087950532561024818880562687774138115124467} a^{2} - \frac{9885848109645715783809920351303756247269825}{173087950532561024818880562687774138115124467} a - \frac{31075243768922851586658065065937647576986168}{173087950532561024818880562687774138115124467}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 94680095.5605 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 34 conjugacy class representatives for t16n1251 |
| Character table for t16n1251 is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, 8.6.2506034826287.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Arithmetically equvalently siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | $16$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 17 | Data not computed | ||||||
| 47 | Data not computed | ||||||