Normalized defining polynomial
\( x^{16} - 8 x^{15} + 36 x^{14} - 85 x^{13} + 162 x^{12} - 1356 x^{11} + 8450 x^{10} - 27976 x^{9} + 57332 x^{8} - 81596 x^{7} + 88676 x^{6} - 81156 x^{5} + 63944 x^{4} - 32841 x^{3} + 3178 x^{2} - 79 x + 3727 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-652030299991134977060343848687=-\,17^{12}\cdot 47^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $73.01$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{12} + \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{7} - \frac{1}{3} a^{5} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{9} a^{14} - \frac{1}{9} a^{13} + \frac{1}{9} a^{12} + \frac{4}{9} a^{11} - \frac{1}{9} a^{9} + \frac{1}{9} a^{8} + \frac{4}{9} a^{7} + \frac{2}{9} a^{6} - \frac{1}{9} a^{5} - \frac{1}{9} a^{4} + \frac{1}{9}$, $\frac{1}{193725804670157322688452854724567} a^{15} - \frac{938885340780609897467077625737}{21525089407795258076494761636063} a^{14} + \frac{2984975919011360577649853437240}{21525089407795258076494761636063} a^{13} - \frac{26800414350476894693716813084462}{193725804670157322688452854724567} a^{12} - \frac{38543908931562222029930841005612}{193725804670157322688452854724567} a^{11} - \frac{39990504917908018172143536514966}{193725804670157322688452854724567} a^{10} + \frac{3216026718675419678800411419757}{21525089407795258076494761636063} a^{9} + \frac{36148671931552291641884265251510}{193725804670157322688452854724567} a^{8} - \frac{11857313598089893780996850493121}{64575268223385774229484284908189} a^{7} + \frac{80139485675959402647375380314252}{193725804670157322688452854724567} a^{6} - \frac{95886175039577876345312830530026}{193725804670157322688452854724567} a^{5} + \frac{48259897921952493621494321304908}{193725804670157322688452854724567} a^{4} - \frac{3305226708784967292820650178031}{21525089407795258076494761636063} a^{3} + \frac{7075896990693754638063518681080}{21525089407795258076494761636063} a^{2} - \frac{59672176097504966015617927622762}{193725804670157322688452854724567} a - \frac{12809126688141590225754616359521}{193725804670157322688452854724567}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 94680095.5605 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 34 conjugacy class representatives for t16n1251 |
| Character table for t16n1251 is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, 8.6.2506034826287.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Arithmetically equvalently siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | $16$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 17 | Data not computed | ||||||
| 47 | Data not computed | ||||||