Normalized defining polynomial
\( x^{16} - 2x^{14} - 8x^{12} + 16x^{10} + 11x^{8} - 18x^{6} + 3x^{4} - x^{2} - 1 \)
Invariants
Degree: | $16$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[2, 7]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(-641424792100000000\) \(\medspace = -\,2^{8}\cdot 5^{8}\cdot 283^{4}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(12.97\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{15/8}5^{1/2}283^{1/2}\approx 137.97787808682992$ | ||
Ramified primes: | \(2\), \(5\), \(283\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{-1}) \) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2}a^{12}-\frac{1}{2}a^{11}-\frac{1}{2}a^{10}-\frac{1}{2}a^{9}-\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{2}a^{13}-\frac{1}{2}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{3754}a^{14}+\frac{779}{3754}a^{12}-\frac{1}{2}a^{11}-\frac{817}{1877}a^{10}-\frac{1655}{3754}a^{8}+\frac{709}{3754}a^{6}-\frac{2}{1877}a^{4}-\frac{622}{1877}a^{2}-\frac{1}{2}a+\frac{721}{3754}$, $\frac{1}{3754}a^{15}+\frac{779}{3754}a^{13}+\frac{243}{3754}a^{11}-\frac{1}{2}a^{10}+\frac{111}{1877}a^{9}-\frac{584}{1877}a^{7}+\frac{1873}{3754}a^{5}+\frac{633}{3754}a^{3}+\frac{721}{3754}a-\frac{1}{2}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $8$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{84}{1877}a^{14}-\frac{259}{1877}a^{12}-\frac{235}{1877}a^{10}+\frac{1755}{1877}a^{8}-\frac{2385}{1877}a^{6}-\frac{336}{1877}a^{4}+\frac{4370}{1877}a^{2}-\frac{1377}{1877}$, $a$, $\frac{324}{1877}a^{14}-\frac{999}{1877}a^{12}-\frac{1979}{1877}a^{10}+\frac{8110}{1877}a^{8}-\frac{1155}{1877}a^{6}-\frac{10681}{1877}a^{4}+\frac{4253}{1877}a^{2}-\frac{1021}{1877}$, $\frac{1553}{3754}a^{15}+\frac{632}{1877}a^{14}-\frac{2755}{3754}a^{13}-\frac{1323}{1877}a^{12}-\frac{13037}{3754}a^{11}-\frac{10061}{3754}a^{10}+\frac{10961}{1877}a^{9}+\frac{10791}{1877}a^{8}+\frac{10901}{1877}a^{7}+\frac{6993}{1877}a^{6}-\frac{23105}{3754}a^{5}-\frac{13790}{1877}a^{4}-\frac{499}{3754}a^{3}+\frac{255}{1877}a^{2}-\frac{2733}{3754}a+\frac{999}{3754}$, $\frac{1437}{3754}a^{15}-\frac{287}{3754}a^{14}-\frac{3023}{3754}a^{13}-\frac{105}{1877}a^{12}-\frac{11193}{3754}a^{11}+\frac{1731}{1877}a^{10}+\frac{24325}{3754}a^{9}+\frac{1981}{3754}a^{8}+\frac{12761}{3754}a^{7}-\frac{12029}{3754}a^{6}-\frac{14136}{1877}a^{5}-\frac{3180}{1877}a^{4}+\frac{5269}{1877}a^{3}+\frac{6029}{3754}a^{2}-\frac{952}{1877}a-\frac{457}{3754}$, $\frac{633}{1877}a^{15}-\frac{289}{3754}a^{14}-\frac{2965}{3754}a^{13}+\frac{109}{3754}a^{12}-\frac{9575}{3754}a^{11}+\frac{1488}{1877}a^{10}+\frac{23903}{3754}a^{9}-\frac{170}{1877}a^{8}+\frac{9773}{3754}a^{7}-\frac{3908}{1877}a^{6}-\frac{29465}{3754}a^{5}-\frac{4475}{3754}a^{4}+\frac{2765}{1877}a^{3}+\frac{1009}{3754}a^{2}+\frac{282}{1877}a+\frac{1866}{1877}$, $\frac{74}{1877}a^{15}+\frac{335}{1877}a^{14}-\frac{541}{1877}a^{13}-\frac{1753}{3754}a^{12}+\frac{301}{3754}a^{11}-\frac{4243}{3754}a^{10}+\frac{8455}{3754}a^{9}+\frac{6798}{1877}a^{8}-\frac{9565}{3754}a^{7}-\frac{864}{1877}a^{6}-\frac{9977}{3754}a^{5}-\frac{6971}{1877}a^{4}+\frac{9219}{3754}a^{3}+\frac{13047}{3754}a^{2}-\frac{1079}{1877}a-\frac{3073}{3754}$, $\frac{74}{1877}a^{15}-\frac{335}{1877}a^{14}-\frac{541}{1877}a^{13}+\frac{1753}{3754}a^{12}+\frac{301}{3754}a^{11}+\frac{4243}{3754}a^{10}+\frac{8455}{3754}a^{9}-\frac{6798}{1877}a^{8}-\frac{9565}{3754}a^{7}+\frac{864}{1877}a^{6}-\frac{9977}{3754}a^{5}+\frac{6971}{1877}a^{4}+\frac{9219}{3754}a^{3}-\frac{13047}{3754}a^{2}-\frac{1079}{1877}a+\frac{3073}{3754}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 222.353266912 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{7}\cdot 222.353266912 \cdot 1}{2\cdot\sqrt{641424792100000000}}\cr\approx \mathstrut & 0.214664247218 \end{aligned}\]
Galois group
$C_{2440}.D_6$ (as 16T1759):
A solvable group of order 12288 |
The 93 conjugacy class representatives for $C_{2440}.D_6$ |
Character table for $C_{2440}.D_6$ |
Intermediate fields
\(\Q(\sqrt{5}) \), 4.2.283.1, 8.4.50055625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 16 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Minimal sibling: | 16.0.262727594844160000.3 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.8.0.1}{8} }{,}\,{\href{/padicField/3.4.0.1}{4} }^{2}$ | R | ${\href{/padicField/7.12.0.1}{12} }{,}\,{\href{/padicField/7.2.0.1}{2} }^{2}$ | ${\href{/padicField/11.3.0.1}{3} }^{4}{,}\,{\href{/padicField/11.2.0.1}{2} }{,}\,{\href{/padicField/11.1.0.1}{1} }^{2}$ | ${\href{/padicField/13.12.0.1}{12} }{,}\,{\href{/padicField/13.4.0.1}{4} }$ | ${\href{/padicField/17.4.0.1}{4} }^{2}{,}\,{\href{/padicField/17.2.0.1}{2} }^{4}$ | ${\href{/padicField/19.8.0.1}{8} }{,}\,{\href{/padicField/19.4.0.1}{4} }^{2}$ | ${\href{/padicField/23.6.0.1}{6} }^{2}{,}\,{\href{/padicField/23.4.0.1}{4} }$ | ${\href{/padicField/29.6.0.1}{6} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }^{2}$ | ${\href{/padicField/31.8.0.1}{8} }{,}\,{\href{/padicField/31.4.0.1}{4} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }^{4}$ | ${\href{/padicField/41.6.0.1}{6} }{,}\,{\href{/padicField/41.3.0.1}{3} }^{2}{,}\,{\href{/padicField/41.2.0.1}{2} }{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.8.0.1}{8} }{,}\,{\href{/padicField/43.4.0.1}{4} }^{2}$ | ${\href{/padicField/47.8.0.1}{8} }{,}\,{\href{/padicField/47.4.0.1}{4} }^{2}$ | ${\href{/padicField/53.4.0.1}{4} }^{2}{,}\,{\href{/padicField/53.2.0.1}{2} }^{4}$ | ${\href{/padicField/59.3.0.1}{3} }^{4}{,}\,{\href{/padicField/59.2.0.1}{2} }{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.4.0.1 | $x^{4} + x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
2.4.0.1 | $x^{4} + x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
2.8.8.8 | $x^{8} - 6 x^{7} + 40 x^{6} - 52 x^{5} + 192 x^{4} + 328 x^{3} + 1376 x^{2} + 1264 x + 1328$ | $2$ | $4$ | $8$ | $((C_8 : C_2):C_2):C_2$ | $[2, 2, 2, 2]^{4}$ | |
\(5\) | 5.16.8.1 | $x^{16} + 160 x^{15} + 11240 x^{14} + 453600 x^{13} + 11536702 x^{12} + 190484240 x^{11} + 2020220586 x^{10} + 13041178608 x^{9} + 45239382035 x^{8} + 65384309200 x^{7} + 52374358166 x^{6} + 35488260768 x^{5} + 46408266743 x^{4} + 66345171264 x^{3} + 136057926318 x^{2} + 159173865296 x + 74196697609$ | $2$ | $8$ | $8$ | $C_8\times C_2$ | $[\ ]_{2}^{8}$ |
\(283\) | Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $4$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | ||
Deg $8$ | $2$ | $4$ | $4$ |