Normalized defining polynomial
\( x^{16} - x^{13} + 2x^{12} - 6x^{11} + 4x^{10} - x^{9} + x^{8} - x^{7} + 4x^{6} - 6x^{5} + 2x^{4} - x^{3} + 1 \)
Invariants
Degree: | $16$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[2, 7]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(-638966001996484375\) \(\medspace = -\,5^{8}\cdot 29^{2}\cdot 31\cdot 89^{4}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(12.97\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $5^{1/2}29^{1/2}31^{1/2}89^{1/2}\approx 632.4990118569357$ | ||
Ramified primes: | \(5\), \(29\), \(31\), \(89\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{-31}) \) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{68}a^{14}-\frac{5}{68}a^{13}+\frac{6}{17}a^{12}+\frac{5}{17}a^{11}+\frac{7}{34}a^{10}-\frac{7}{17}a^{9}-\frac{3}{34}a^{8}-\frac{11}{68}a^{7}-\frac{3}{34}a^{6}-\frac{7}{17}a^{5}+\frac{7}{34}a^{4}+\frac{5}{17}a^{3}+\frac{6}{17}a^{2}-\frac{5}{68}a+\frac{1}{68}$, $\frac{1}{68}a^{15}-\frac{1}{68}a^{13}+\frac{1}{17}a^{12}-\frac{11}{34}a^{11}-\frac{13}{34}a^{10}-\frac{5}{34}a^{9}+\frac{27}{68}a^{8}+\frac{7}{68}a^{7}+\frac{5}{34}a^{6}+\frac{5}{34}a^{5}+\frac{11}{34}a^{4}-\frac{3}{17}a^{3}-\frac{21}{68}a^{2}-\frac{6}{17}a+\frac{5}{68}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $2$ |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $8$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $a$, $\frac{14}{17}a^{15}+\frac{1}{17}a^{14}-\frac{2}{17}a^{13}-\frac{5}{17}a^{12}+\frac{35}{17}a^{11}-\frac{78}{17}a^{10}+\frac{36}{17}a^{9}+\frac{15}{17}a^{8}-\frac{32}{17}a^{7}-\frac{19}{17}a^{6}+\frac{61}{17}a^{5}-\frac{52}{17}a^{4}+\frac{5}{17}a^{3}+\frac{19}{17}a^{2}-\frac{18}{17}a-\frac{14}{17}$, $\frac{19}{68}a^{15}+\frac{47}{68}a^{14}+\frac{9}{34}a^{13}-\frac{5}{17}a^{12}-\frac{11}{34}a^{11}-\frac{10}{17}a^{10}-\frac{73}{34}a^{9}+\frac{95}{68}a^{8}+\frac{6}{17}a^{7}+\frac{11}{17}a^{6}+\frac{15}{34}a^{5}-\frac{3}{17}a^{4}-\frac{43}{17}a^{3}+\frac{49}{68}a^{2}-\frac{11}{68}a+\frac{3}{34}$, $\frac{3}{34}a^{15}-\frac{19}{68}a^{14}-\frac{47}{68}a^{13}-\frac{6}{17}a^{12}+\frac{8}{17}a^{11}-\frac{7}{34}a^{10}+\frac{16}{17}a^{9}+\frac{35}{17}a^{8}-\frac{89}{68}a^{7}-\frac{15}{34}a^{6}-\frac{5}{17}a^{5}-\frac{33}{34}a^{4}+\frac{6}{17}a^{3}+\frac{83}{34}a^{2}+\frac{19}{68}a+\frac{11}{68}$, $\frac{1}{68}a^{15}+\frac{3}{17}a^{14}+\frac{7}{68}a^{13}+\frac{5}{17}a^{12}+\frac{7}{34}a^{11}+\frac{3}{34}a^{10}-\frac{37}{34}a^{9}+\frac{23}{68}a^{8}-\frac{57}{68}a^{7}-\frac{31}{34}a^{6}+\frac{41}{34}a^{5}-\frac{7}{34}a^{4}-\frac{11}{17}a^{3}+\frac{63}{68}a^{2}-\frac{21}{17}a-\frac{3}{4}$, $\frac{11}{34}a^{15}-\frac{10}{17}a^{14}-\frac{13}{34}a^{13}-\frac{14}{17}a^{12}+\frac{19}{17}a^{11}-\frac{45}{17}a^{10}+\frac{72}{17}a^{9}-\frac{59}{34}a^{8}+\frac{59}{34}a^{7}-\frac{21}{17}a^{6}+\frac{12}{17}a^{5}-\frac{53}{17}a^{4}+\frac{57}{17}a^{3}-\frac{31}{34}a^{2}+\frac{20}{17}a+\frac{35}{34}$, $\frac{11}{34}a^{15}-\frac{10}{17}a^{14}-\frac{13}{34}a^{13}-\frac{14}{17}a^{12}+\frac{19}{17}a^{11}-\frac{45}{17}a^{10}+\frac{72}{17}a^{9}-\frac{59}{34}a^{8}+\frac{59}{34}a^{7}-\frac{21}{17}a^{6}+\frac{12}{17}a^{5}-\frac{53}{17}a^{4}+\frac{57}{17}a^{3}-\frac{31}{34}a^{2}+\frac{20}{17}a+\frac{1}{34}$, $\frac{27}{68}a^{15}-\frac{4}{17}a^{14}-\frac{15}{68}a^{13}-\frac{1}{17}a^{12}+\frac{53}{34}a^{11}-\frac{89}{34}a^{10}+\frac{55}{34}a^{9}+\frac{9}{68}a^{8}-\frac{43}{68}a^{7}-\frac{55}{34}a^{6}+\frac{53}{34}a^{5}-\frac{19}{34}a^{4}+\frac{9}{17}a^{3}-\frac{67}{68}a^{2}+\frac{11}{17}a-\frac{1}{4}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 298.472419612 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{7}\cdot 298.472419612 \cdot 1}{2\cdot\sqrt{638966001996484375}}\cr\approx \mathstrut & 0.288705066228 \end{aligned}\]
Galois group
$C_4^4.C_2\wr D_4$ (as 16T1823):
A solvable group of order 32768 |
The 230 conjugacy class representatives for $C_4^4.C_2\wr D_4$ |
Character table for $C_4^4.C_2\wr D_4$ |
Intermediate fields
\(\Q(\sqrt{5}) \), 4.4.2225.1, 8.4.143568125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 16 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.8.0.1}{8} }{,}\,{\href{/padicField/2.4.0.1}{4} }{,}\,{\href{/padicField/2.2.0.1}{2} }^{2}$ | $16$ | R | ${\href{/padicField/7.8.0.1}{8} }^{2}$ | ${\href{/padicField/11.8.0.1}{8} }{,}\,{\href{/padicField/11.2.0.1}{2} }^{4}$ | ${\href{/padicField/13.8.0.1}{8} }{,}\,{\href{/padicField/13.4.0.1}{4} }^{2}$ | ${\href{/padicField/17.4.0.1}{4} }^{3}{,}\,{\href{/padicField/17.2.0.1}{2} }^{2}$ | ${\href{/padicField/19.8.0.1}{8} }{,}\,{\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}$ | ${\href{/padicField/23.8.0.1}{8} }{,}\,{\href{/padicField/23.4.0.1}{4} }^{2}$ | R | R | $16$ | ${\href{/padicField/41.4.0.1}{4} }^{3}{,}\,{\href{/padicField/41.2.0.1}{2} }{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | $16$ | ${\href{/padicField/47.8.0.1}{8} }{,}\,{\href{/padicField/47.4.0.1}{4} }{,}\,{\href{/padicField/47.2.0.1}{2} }^{2}$ | ${\href{/padicField/53.8.0.1}{8} }{,}\,{\href{/padicField/53.4.0.1}{4} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }^{3}{,}\,{\href{/padicField/59.2.0.1}{2} }{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(5\) | 5.16.8.1 | $x^{16} + 160 x^{15} + 11240 x^{14} + 453600 x^{13} + 11536702 x^{12} + 190484240 x^{11} + 2020220586 x^{10} + 13041178608 x^{9} + 45239382035 x^{8} + 65384309200 x^{7} + 52374358166 x^{6} + 35488260768 x^{5} + 46408266743 x^{4} + 66345171264 x^{3} + 136057926318 x^{2} + 159173865296 x + 74196697609$ | $2$ | $8$ | $8$ | $C_8\times C_2$ | $[\ ]_{2}^{8}$ |
\(29\) | 29.2.1.1 | $x^{2} + 29$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
29.2.1.1 | $x^{2} + 29$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
29.4.0.1 | $x^{4} + 2 x^{2} + 15 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
29.4.0.1 | $x^{4} + 2 x^{2} + 15 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
29.4.0.1 | $x^{4} + 2 x^{2} + 15 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
\(31\) | 31.2.1.1 | $x^{2} + 93$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
31.2.0.1 | $x^{2} + 29 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
31.2.0.1 | $x^{2} + 29 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
31.2.0.1 | $x^{2} + 29 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
31.4.0.1 | $x^{4} + 3 x^{2} + 16 x + 3$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
31.4.0.1 | $x^{4} + 3 x^{2} + 16 x + 3$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
\(89\) | 89.2.1.2 | $x^{2} + 267$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
89.2.1.2 | $x^{2} + 267$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
89.4.2.1 | $x^{4} + 12268 x^{3} + 38122404 x^{2} + 3045212032 x + 156142232$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
89.8.0.1 | $x^{8} + 65 x^{3} + 40 x^{2} + 79 x + 3$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ |