Normalized defining polynomial
\( x^{16} - 3 x^{15} + 6 x^{14} - 11 x^{13} + 14 x^{12} - 16 x^{11} + 13 x^{10} - 8 x^{9} + 7 x^{8} + \cdots + 1 \)
Invariants
Degree: | $16$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[2, 7]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(-45287535480859375\) \(\medspace = -\,5^{8}\cdot 11^{4}\cdot 151\cdot 229^{2}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(10.99\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $5^{1/2}11^{1/2}151^{1/2}229^{1/2}\approx 1379.0739646588938$ | ||
Ramified primes: | \(5\), \(11\), \(151\), \(229\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{-151}) \) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{47}a^{14}-\frac{12}{47}a^{13}+\frac{19}{47}a^{12}+\frac{18}{47}a^{11}+\frac{21}{47}a^{10}+\frac{12}{47}a^{9}-\frac{22}{47}a^{8}-\frac{10}{47}a^{7}-\frac{22}{47}a^{6}+\frac{12}{47}a^{5}+\frac{21}{47}a^{4}+\frac{18}{47}a^{3}+\frac{19}{47}a^{2}-\frac{12}{47}a+\frac{1}{47}$, $\frac{1}{47}a^{15}+\frac{16}{47}a^{13}+\frac{11}{47}a^{12}+\frac{2}{47}a^{11}-\frac{18}{47}a^{10}-\frac{19}{47}a^{9}+\frac{8}{47}a^{8}-\frac{1}{47}a^{7}-\frac{17}{47}a^{6}-\frac{23}{47}a^{5}-\frac{12}{47}a^{4}-\frac{19}{47}a^{2}-\frac{2}{47}a+\frac{12}{47}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $8$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $a$, $\frac{31}{47}a^{15}-\frac{69}{47}a^{14}+\frac{149}{47}a^{13}-\frac{265}{47}a^{12}+\frac{277}{47}a^{11}-\frac{362}{47}a^{10}+\frac{181}{47}a^{9}-\frac{114}{47}a^{8}+\frac{95}{47}a^{7}-\frac{90}{47}a^{6}+\frac{339}{47}a^{5}-\frac{317}{47}a^{4}+\frac{262}{47}a^{3}-\frac{208}{47}a^{2}+\frac{14}{47}a-\frac{26}{47}$, $\frac{85}{47}a^{15}-\frac{218}{47}a^{14}+\frac{404}{47}a^{13}-\frac{716}{47}a^{12}+\frac{805}{47}a^{11}-\frac{891}{47}a^{10}+\frac{563}{47}a^{9}-\frac{305}{47}a^{8}+\frac{356}{47}a^{7}-\frac{503}{47}a^{6}+\frac{834}{47}a^{5}-\frac{851}{47}a^{4}+\frac{682}{47}a^{3}-\frac{493}{47}a^{2}+\frac{237}{47}a-\frac{138}{47}$, $\frac{1}{47}a^{15}-\frac{42}{47}a^{14}+\frac{97}{47}a^{13}-\frac{176}{47}a^{12}+\frac{327}{47}a^{11}-\frac{336}{47}a^{10}+\frac{370}{47}a^{9}-\frac{243}{47}a^{8}+\frac{90}{47}a^{7}-\frac{174}{47}a^{6}+\frac{178}{47}a^{5}-\frac{377}{47}a^{4}+\frac{419}{47}a^{3}-\frac{253}{47}a^{2}+\frac{173}{47}a-\frac{30}{47}$, $\frac{62}{47}a^{15}-\frac{176}{47}a^{14}+\frac{331}{47}a^{13}-\frac{594}{47}a^{12}+\frac{716}{47}a^{11}-\frac{770}{47}a^{10}+12a^{9}-\frac{285}{47}a^{8}+\frac{288}{47}a^{7}-\frac{425}{47}a^{6}+\frac{645}{47}a^{5}-\frac{821}{47}a^{4}+\frac{639}{47}a^{3}-\frac{433}{47}a^{2}+\frac{249}{47}a-\frac{90}{47}$, $\frac{2}{47}a^{15}-\frac{32}{47}a^{14}+\frac{40}{47}a^{13}-\frac{69}{47}a^{12}+\frac{133}{47}a^{11}-\frac{50}{47}a^{10}+\frac{95}{47}a^{9}+\frac{15}{47}a^{8}-\frac{11}{47}a^{7}-\frac{82}{47}a^{6}+\frac{40}{47}a^{5}-\frac{132}{47}a^{4}+\frac{82}{47}a^{3}+\frac{12}{47}a^{2}+\frac{4}{47}a+\frac{39}{47}$, $\frac{110}{47}a^{15}-\frac{307}{47}a^{14}+\frac{556}{47}a^{13}-\frac{1004}{47}a^{12}+\frac{1180}{47}a^{11}-\frac{1236}{47}a^{10}+\frac{900}{47}a^{9}-\frac{403}{47}a^{8}+\frac{516}{47}a^{7}-\frac{709}{47}a^{6}+\frac{1118}{47}a^{5}-\frac{1328}{47}a^{4}+\frac{960}{47}a^{3}-\frac{685}{47}a^{2}+\frac{315}{47}a-\frac{115}{47}$, $\frac{31}{47}a^{15}-\frac{69}{47}a^{14}+\frac{149}{47}a^{13}-\frac{265}{47}a^{12}+\frac{277}{47}a^{11}-\frac{362}{47}a^{10}+\frac{181}{47}a^{9}-\frac{114}{47}a^{8}+\frac{95}{47}a^{7}-\frac{90}{47}a^{6}+\frac{339}{47}a^{5}-\frac{317}{47}a^{4}+\frac{262}{47}a^{3}-\frac{161}{47}a^{2}+\frac{14}{47}a-\frac{26}{47}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 46.4808624 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{7}\cdot 46.4808624 \cdot 1}{2\cdot\sqrt{45287535480859375}}\cr\approx \mathstrut & 0.168878323 \end{aligned}\]
Galois group
$C_4^4.C_2\wr D_4$ (as 16T1823):
A solvable group of order 32768 |
The 230 conjugacy class representatives for $C_4^4.C_2\wr D_4$ |
Character table for $C_4^4.C_2\wr D_4$ |
Intermediate fields
\(\Q(\sqrt{5}) \), 4.2.275.1, 8.4.17318125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 16 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Minimal sibling: | 16.0.29862086714453125.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.8.0.1}{8} }^{2}$ | ${\href{/padicField/3.8.0.1}{8} }{,}\,{\href{/padicField/3.4.0.1}{4} }^{2}$ | R | $16$ | R | $16$ | ${\href{/padicField/17.4.0.1}{4} }^{4}$ | ${\href{/padicField/19.4.0.1}{4} }^{3}{,}\,{\href{/padicField/19.2.0.1}{2} }{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.4.0.1}{4} }^{3}{,}\,{\href{/padicField/23.2.0.1}{2} }^{2}$ | ${\href{/padicField/29.4.0.1}{4} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }^{4}$ | ${\href{/padicField/31.8.0.1}{8} }{,}\,{\href{/padicField/31.4.0.1}{4} }{,}\,{\href{/padicField/31.2.0.1}{2} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }^{4}$ | ${\href{/padicField/41.4.0.1}{4} }^{2}{,}\,{\href{/padicField/41.2.0.1}{2} }^{3}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.8.0.1}{8} }^{2}$ | ${\href{/padicField/47.4.0.1}{4} }^{2}{,}\,{\href{/padicField/47.2.0.1}{2} }^{4}$ | ${\href{/padicField/53.8.0.1}{8} }{,}\,{\href{/padicField/53.4.0.1}{4} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }{,}\,{\href{/padicField/59.2.0.1}{2} }^{5}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(5\) | 5.16.8.1 | $x^{16} + 160 x^{15} + 11240 x^{14} + 453600 x^{13} + 11536702 x^{12} + 190484240 x^{11} + 2020220586 x^{10} + 13041178608 x^{9} + 45239382035 x^{8} + 65384309200 x^{7} + 52374358166 x^{6} + 35488260768 x^{5} + 46408266743 x^{4} + 66345171264 x^{3} + 136057926318 x^{2} + 159173865296 x + 74196697609$ | $2$ | $8$ | $8$ | $C_8\times C_2$ | $[\ ]_{2}^{8}$ |
\(11\) | 11.4.0.1 | $x^{4} + 8 x^{2} + 10 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
11.4.0.1 | $x^{4} + 8 x^{2} + 10 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
11.8.4.1 | $x^{8} + 60 x^{6} + 20 x^{5} + 970 x^{4} - 280 x^{3} + 4664 x^{2} - 5460 x + 2325$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
\(151\) | $\Q_{151}$ | $x + 145$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{151}$ | $x + 145$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
151.2.1.1 | $x^{2} + 453$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
151.2.0.1 | $x^{2} + 149 x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
151.2.0.1 | $x^{2} + 149 x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
151.2.0.1 | $x^{2} + 149 x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
151.2.0.1 | $x^{2} + 149 x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
151.4.0.1 | $x^{4} + 13 x^{2} + 89 x + 6$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
\(229\) | Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |