Normalized defining polynomial
\( x^{16} - x^{15} - 47 x^{14} - 16 x^{13} + 1220 x^{12} + 1088 x^{11} - 16813 x^{10} - 23595 x^{9} + 113531 x^{8} + 268072 x^{7} - 352708 x^{6} - 1414400 x^{5} + 817744 x^{4} + 4368256 x^{3} - 2448320 x^{2} - 27340032 x - 43011072 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-398523756312075451372168518540991=-\,19^{8}\cdot 31^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $109.03$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $19, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{12} a^{9} + \frac{1}{4} a^{3} - \frac{1}{3} a$, $\frac{1}{24} a^{10} - \frac{1}{24} a^{9} - \frac{1}{8} a^{8} - \frac{1}{4} a^{7} + \frac{1}{8} a^{4} - \frac{1}{8} a^{3} - \frac{1}{24} a^{2} - \frac{1}{12} a$, $\frac{1}{48} a^{11} - \frac{1}{48} a^{10} + \frac{1}{48} a^{9} - \frac{1}{4} a^{7} + \frac{1}{16} a^{5} - \frac{1}{16} a^{4} + \frac{11}{48} a^{3} - \frac{1}{6} a^{2} + \frac{5}{12} a$, $\frac{1}{384} a^{12} - \frac{1}{384} a^{11} - \frac{7}{384} a^{10} + \frac{1}{48} a^{9} - \frac{3}{32} a^{8} - \frac{1}{8} a^{7} - \frac{31}{128} a^{6} + \frac{7}{128} a^{5} - \frac{13}{384} a^{4} - \frac{5}{24} a^{3} + \frac{1}{96} a^{2} - \frac{5}{24} a - \frac{1}{2}$, $\frac{1}{4608} a^{13} + \frac{1}{4608} a^{12} - \frac{41}{4608} a^{11} + \frac{13}{2304} a^{10} + \frac{19}{1152} a^{9} - \frac{5}{192} a^{8} + \frac{65}{1536} a^{7} - \frac{247}{1536} a^{6} - \frac{643}{4608} a^{5} - \frac{389}{2304} a^{4} - \frac{559}{1152} a^{3} + \frac{239}{576} a^{2} - \frac{59}{144} a - \frac{5}{12}$, $\frac{1}{7004160} a^{14} + \frac{199}{7004160} a^{13} - \frac{631}{1400832} a^{12} + \frac{5813}{1751040} a^{11} + \frac{2227}{175104} a^{10} - \frac{187}{48640} a^{9} - \frac{152431}{2334720} a^{8} - \frac{229297}{2334720} a^{7} - \frac{301949}{1400832} a^{6} - \frac{22151}{350208} a^{5} + \frac{149719}{875520} a^{4} + \frac{13997}{87552} a^{3} - \frac{4117}{437760} a^{2} + \frac{6463}{36480} a - \frac{141}{3040}$, $\frac{1}{37865117669213619962517087682560} a^{15} + \frac{481657978331498827472951}{12621705889737873320839029227520} a^{14} + \frac{1266694884588558897725251711}{37865117669213619962517087682560} a^{13} + \frac{6923648757816375435148666381}{18932558834606809981258543841280} a^{12} + \frac{1982959695863254294749789937}{262952206036205694184146442240} a^{11} + \frac{6601688194318934560127645051}{1183284927162925623828658990080} a^{10} + \frac{199414235361598647080584173623}{7573023533842723992503417536512} a^{9} - \frac{346017765324626815120782328051}{12621705889737873320839029227520} a^{8} + \frac{2926244893124299150529252523221}{37865117669213619962517087682560} a^{7} - \frac{63203308545429866954072285209}{420723529657929110694634307584} a^{6} + \frac{559139841544595996001363147497}{2366569854325851247657317980160} a^{5} - \frac{95536568611963110772442288431}{1183284927162925623828658990080} a^{4} + \frac{14710647169705139293402061491}{788856618108617082552439326720} a^{3} + \frac{523329910508823417491822871919}{1183284927162925623828658990080} a^{2} - \frac{27688310798879511543678759931}{59164246358146281191432949504} a - \frac{2519418739805766893510966681}{24651769315894283829763728960}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 339885759220 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $D_{16}$ |
| Character table for $D_{16}$ |
Intermediate fields
| \(\Q(\sqrt{589}) \), 4.2.10754551.1, 8.2.3585471383559631.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | $16$ | R | $16$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/37.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | $16$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $19$ | 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31 | Data not computed | ||||||