Normalized defining polynomial
\( x^{16} - 3 x^{15} + 6 x^{14} - 4 x^{13} - x^{12} + 9 x^{11} - 15 x^{10} + 16 x^{9} - 17 x^{8} + 16 x^{7} + \cdots + 1 \)
Invariants
Degree: | $16$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[2, 7]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(-398383834480859375\) \(\medspace = -\,5^{8}\cdot 71\cdot 119851^{2}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(12.59\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $5^{1/2}71^{1/2}119851^{1/2}\approx 6522.814193275783$ | ||
Ramified primes: | \(5\), \(71\), \(119851\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{-71}) \) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{83}a^{14}-\frac{30}{83}a^{13}-\frac{15}{83}a^{12}+\frac{16}{83}a^{11}-\frac{3}{83}a^{10}-\frac{9}{83}a^{9}-\frac{18}{83}a^{8}+\frac{13}{83}a^{7}-\frac{18}{83}a^{6}-\frac{9}{83}a^{5}-\frac{3}{83}a^{4}+\frac{16}{83}a^{3}-\frac{15}{83}a^{2}-\frac{30}{83}a+\frac{1}{83}$, $\frac{1}{83}a^{15}-\frac{2}{83}a^{13}-\frac{19}{83}a^{12}-\frac{21}{83}a^{11}-\frac{16}{83}a^{10}-\frac{39}{83}a^{9}-\frac{29}{83}a^{8}+\frac{40}{83}a^{7}+\frac{32}{83}a^{6}-\frac{24}{83}a^{5}+\frac{9}{83}a^{4}-\frac{33}{83}a^{3}+\frac{18}{83}a^{2}+\frac{14}{83}a+\frac{30}{83}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $8$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $a$, $\frac{64}{83}a^{15}-\frac{144}{83}a^{14}+\frac{208}{83}a^{13}+\frac{114}{83}a^{12}-\frac{328}{83}a^{11}+\frac{404}{83}a^{10}-\frac{204}{83}a^{9}+\frac{155}{83}a^{8}-\frac{308}{83}a^{7}+\frac{324}{83}a^{6}-\frac{240}{83}a^{5}-\frac{154}{83}a^{4}+\frac{232}{83}a^{3}-\frac{8}{83}a^{2}-\frac{96}{83}a+\frac{116}{83}$, $\frac{17}{83}a^{15}-\frac{24}{83}a^{14}+\frac{22}{83}a^{13}+\frac{37}{83}a^{12}+\frac{6}{83}a^{11}-\frac{34}{83}a^{10}-\frac{115}{83}a^{9}+\frac{188}{83}a^{8}-\frac{130}{83}a^{7}+\frac{63}{83}a^{6}+\frac{57}{83}a^{5}-\frac{24}{83}a^{4}-\frac{32}{83}a^{3}+\frac{2}{83}a^{2}+\frac{45}{83}a-\frac{95}{83}$, $\frac{24}{83}a^{15}+\frac{43}{83}a^{14}-\frac{93}{83}a^{13}+\frac{227}{83}a^{12}+\frac{184}{83}a^{11}-\frac{264}{83}a^{10}+\frac{171}{83}a^{9}-\frac{142}{83}a^{8}-\frac{58}{83}a^{7}-\frac{255}{83}a^{6}+\frac{116}{83}a^{5}+\frac{4}{83}a^{4}-\frac{187}{83}a^{3}+\frac{285}{83}a^{2}+\frac{42}{83}a+\frac{16}{83}$, $\frac{59}{83}a^{15}-\frac{292}{83}a^{14}+\frac{591}{83}a^{13}-\frac{559}{83}a^{12}-\frac{267}{83}a^{11}+\frac{1011}{83}a^{10}-\frac{1416}{83}a^{9}+\frac{1470}{83}a^{8}-\frac{1353}{83}a^{7}+\frac{1583}{83}a^{6}-\frac{1361}{83}a^{5}+\frac{743}{83}a^{4}+\frac{104}{83}a^{3}-\frac{617}{83}a^{2}+\frac{373}{83}a-\frac{182}{83}$, $\frac{67}{83}a^{15}-\frac{250}{83}a^{14}+\frac{477}{83}a^{13}-\frac{262}{83}a^{12}-\frac{427}{83}a^{11}+\frac{1006}{83}a^{10}-\frac{944}{83}a^{9}+\frac{731}{83}a^{8}-\frac{819}{83}a^{7}+\frac{917}{83}a^{6}-\frac{769}{83}a^{5}+\frac{108}{83}a^{4}+\frac{512}{83}a^{3}-\frac{522}{83}a^{2}+\frac{138}{83}a+\frac{17}{83}$, $\frac{50}{83}a^{15}-a^{14}+\frac{149}{83}a^{13}+\frac{46}{83}a^{12}-\frac{54}{83}a^{11}+\frac{279}{83}a^{10}-\frac{373}{83}a^{9}+\frac{210}{83}a^{8}-\frac{324}{83}a^{7}+\frac{189}{83}a^{6}-\frac{287}{83}a^{5}+\frac{35}{83}a^{4}+\frac{93}{83}a^{3}-\frac{13}{83}a^{2}+\frac{119}{83}a+\frac{89}{83}$, $\frac{21}{83}a^{15}-\frac{175}{83}a^{14}+\frac{394}{83}a^{13}-\frac{513}{83}a^{12}-\frac{87}{83}a^{11}+\frac{687}{83}a^{10}-\frac{1153}{83}a^{9}+\frac{1047}{83}a^{8}-\frac{937}{83}a^{7}+\frac{1083}{83}a^{6}-\frac{1004}{83}a^{5}+\frac{631}{83}a^{4}+\frac{159}{83}a^{3}-\frac{566}{83}a^{2}+\frac{398}{83}a-\frac{209}{83}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 157.185388951 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{7}\cdot 157.185388951 \cdot 1}{2\cdot\sqrt{398383834480859375}}\cr\approx \mathstrut & 0.192553046621 \end{aligned}\]
Galois group
$C_2^6.S_4^2:D_4$ (as 16T1905):
A solvable group of order 294912 |
The 230 conjugacy class representatives for $C_2^6.S_4^2:D_4$ |
Character table for $C_2^6.S_4^2:D_4$ |
Intermediate fields
\(\Q(\sqrt{5}) \), 8.6.74906875.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 16 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.8.0.1}{8} }^{2}$ | ${\href{/padicField/3.8.0.1}{8} }^{2}$ | R | $16$ | ${\href{/padicField/11.8.0.1}{8} }{,}\,{\href{/padicField/11.4.0.1}{4} }^{2}$ | ${\href{/padicField/13.12.0.1}{12} }{,}\,{\href{/padicField/13.2.0.1}{2} }^{2}$ | ${\href{/padicField/17.6.0.1}{6} }^{2}{,}\,{\href{/padicField/17.4.0.1}{4} }$ | ${\href{/padicField/19.6.0.1}{6} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }^{4}$ | ${\href{/padicField/23.12.0.1}{12} }{,}\,{\href{/padicField/23.2.0.1}{2} }^{2}$ | ${\href{/padicField/29.8.0.1}{8} }^{2}$ | ${\href{/padicField/31.4.0.1}{4} }^{2}{,}\,{\href{/padicField/31.3.0.1}{3} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }$ | ${\href{/padicField/37.8.0.1}{8} }^{2}$ | ${\href{/padicField/41.2.0.1}{2} }^{5}{,}\,{\href{/padicField/41.1.0.1}{1} }^{6}$ | ${\href{/padicField/43.4.0.1}{4} }^{4}$ | ${\href{/padicField/47.8.0.1}{8} }{,}\,{\href{/padicField/47.4.0.1}{4} }^{2}$ | $16$ | ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.4.0.1}{4} }{,}\,{\href{/padicField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(5\) | 5.16.8.1 | $x^{16} + 160 x^{15} + 11240 x^{14} + 453600 x^{13} + 11536702 x^{12} + 190484240 x^{11} + 2020220586 x^{10} + 13041178608 x^{9} + 45239382035 x^{8} + 65384309200 x^{7} + 52374358166 x^{6} + 35488260768 x^{5} + 46408266743 x^{4} + 66345171264 x^{3} + 136057926318 x^{2} + 159173865296 x + 74196697609$ | $2$ | $8$ | $8$ | $C_8\times C_2$ | $[\ ]_{2}^{8}$ |
\(71\) | $\Q_{71}$ | $x + 64$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{71}$ | $x + 64$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
71.2.0.1 | $x^{2} + 69 x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
71.2.0.1 | $x^{2} + 69 x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
71.2.1.2 | $x^{2} + 71$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
71.4.0.1 | $x^{4} + 4 x^{2} + 41 x + 7$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
71.4.0.1 | $x^{4} + 4 x^{2} + 41 x + 7$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
\(119851\) | $\Q_{119851}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{119851}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{119851}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{119851}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $4$ | $2$ | $2$ | $2$ |