Normalized defining polynomial
\( x^{16} - 6 x^{15} - 17 x^{14} + 250 x^{13} - 910 x^{12} + 4176 x^{11} - 21338 x^{10} - 20040 x^{9} + 955169 x^{8} - 5770220 x^{7} + 18177768 x^{6} - 32990878 x^{5} + 30242442 x^{4} - 1936548 x^{3} - 17128241 x^{2} + 3725040 x - 300899 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-322626676239789982105600000000=-\,2^{20}\cdot 5^{8}\cdot 31^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $69.87$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{170061370676483866159612798971212923971141599320028977459} a^{15} - \frac{1105270618115080198163635536416256564832705972510218218}{15460124606953078741782981724655720361012872665457179769} a^{14} - \frac{56893871692421327670865387231488388044857276489920199737}{170061370676483866159612798971212923971141599320028977459} a^{13} + \frac{1523104060483351591110762315833149464168556314562918218}{170061370676483866159612798971212923971141599320028977459} a^{12} + \frac{279837009346671575487228059554374952036046946866524652}{15460124606953078741782981724655720361012872665457179769} a^{11} + \frac{40384959302256756389458476674265450045347361426528616067}{170061370676483866159612798971212923971141599320028977459} a^{10} - \frac{4040638989541934432272885922738794457764615860901450677}{15460124606953078741782981724655720361012872665457179769} a^{9} + \frac{8892805317514654241116210047242094484355346339349523591}{170061370676483866159612798971212923971141599320028977459} a^{8} + \frac{23194929857957272479680835001666582699438941562397779899}{170061370676483866159612798971212923971141599320028977459} a^{7} - \frac{44229306332386619259977786974094579921696695832040298791}{170061370676483866159612798971212923971141599320028977459} a^{6} + \frac{3265547993878968820775603334262396316582950386674722847}{170061370676483866159612798971212923971141599320028977459} a^{5} + \frac{77880102091894870612526115207023487620848280184737710018}{170061370676483866159612798971212923971141599320028977459} a^{4} + \frac{39869081894468930627348293944531208101056180933478982761}{170061370676483866159612798971212923971141599320028977459} a^{3} - \frac{39091865381463212965925005664321984254725019390849555264}{170061370676483866159612798971212923971141599320028977459} a^{2} + \frac{74357568109712160051603275753865130102709136424243433067}{170061370676483866159612798971212923971141599320028977459} a - \frac{33667825590351992588224501788217149389449906786660177122}{170061370676483866159612798971212923971141599320028977459}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 208866867.023 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 29 conjugacy class representatives for t16n1022 |
| Character table for t16n1022 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.2.775.1, 8.2.9235210000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Arithmetically equvalently siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | $16$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | $16$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.9 | $x^{8} + 6 x^{6} + 4 x^{5} + 16$ | $2$ | $4$ | $8$ | $((C_8 : C_2):C_2):C_2$ | $[2, 2, 2, 2]^{4}$ |
| 2.8.12.22 | $x^{8} + 4 x^{7} + 16 x^{3} + 48$ | $4$ | $2$ | $12$ | $(((C_4 \times C_2): C_2):C_2):C_2$ | $[2, 2, 2, 2]^{4}$ | |
| 5 | Data not computed | ||||||
| $31$ | 31.8.6.2 | $x^{8} + 713 x^{4} + 138384$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |
| 31.8.6.3 | $x^{8} - 31 x^{4} + 11532$ | $4$ | $2$ | $6$ | $C_8:C_2$ | $[\ ]_{4}^{4}$ | |