Normalized defining polynomial
\( x^{16} - 6 x^{15} - 17 x^{14} + 126 x^{13} - 538 x^{12} + 580 x^{11} + 15614 x^{10} - 17436 x^{9} - 30631 x^{8} + 238200 x^{7} - 927656 x^{6} - 3753786 x^{5} - 5676142 x^{4} - 16826964 x^{3} - 55589321 x^{2} - 129895624 x - 18985591 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-322626676239789982105600000000=-\,2^{20}\cdot 5^{8}\cdot 31^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $69.87$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{11} a^{13} + \frac{1}{11} a^{12} + \frac{4}{11} a^{11} - \frac{2}{11} a^{10} + \frac{5}{11} a^{9} - \frac{5}{11} a^{8} - \frac{5}{11} a^{7} + \frac{1}{11} a^{6} - \frac{1}{11} a^{5} + \frac{5}{11} a^{4} + \frac{1}{11} a^{3} + \frac{2}{11} a^{2} + \frac{4}{11} a - \frac{4}{11}$, $\frac{1}{11} a^{14} + \frac{3}{11} a^{12} + \frac{5}{11} a^{11} - \frac{4}{11} a^{10} + \frac{1}{11} a^{9} - \frac{5}{11} a^{7} - \frac{2}{11} a^{6} - \frac{5}{11} a^{5} - \frac{4}{11} a^{4} + \frac{1}{11} a^{3} + \frac{2}{11} a^{2} + \frac{3}{11} a + \frac{4}{11}$, $\frac{1}{10641625903357416830693572717234701141841485273563233367471} a^{15} + \frac{157689741177540243228891515859974275348332722372970357109}{10641625903357416830693572717234701141841485273563233367471} a^{14} + \frac{187479385765351007317309142338637812906468231916999917908}{10641625903357416830693572717234701141841485273563233367471} a^{13} + \frac{4446664128721239431150308014066263073233083843346649066252}{10641625903357416830693572717234701141841485273563233367471} a^{12} + \frac{3636001956978878825865388296759135419381653494238269768656}{10641625903357416830693572717234701141841485273563233367471} a^{11} - \frac{3188163070904054870259795193543436507419724780333554866765}{10641625903357416830693572717234701141841485273563233367471} a^{10} - \frac{2838698563072303079595489608337009600502111560266999561184}{10641625903357416830693572717234701141841485273563233367471} a^{9} - \frac{4857537421370133017559464457960560878227089340608624783628}{10641625903357416830693572717234701141841485273563233367471} a^{8} + \frac{671908876851061914044109400762226192386173509871124810087}{10641625903357416830693572717234701141841485273563233367471} a^{7} - \frac{2152206834897268843439742049762946704481279903642564034548}{10641625903357416830693572717234701141841485273563233367471} a^{6} - \frac{563321053251288244463401721256911251978092026992842883275}{10641625903357416830693572717234701141841485273563233367471} a^{5} + \frac{200087102889680447307154732802953475016238235891484884664}{10641625903357416830693572717234701141841485273563233367471} a^{4} + \frac{2584881883192424593459076200374887106792460680120560617179}{10641625903357416830693572717234701141841485273563233367471} a^{3} - \frac{2501835579560285854576979027400843695331526064032477403230}{10641625903357416830693572717234701141841485273563233367471} a^{2} + \frac{1649701848815101718126450762724977278104258731795189581918}{10641625903357416830693572717234701141841485273563233367471} a + \frac{4633474733551086041360407556331464304121627995561202368678}{10641625903357416830693572717234701141841485273563233367471}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 381001007.919 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 29 conjugacy class representatives for t16n1022 |
| Character table for t16n1022 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.2.775.1, 8.2.9235210000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Arithmetically equvalently siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | $16$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | $16$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.9 | $x^{8} + 6 x^{6} + 4 x^{5} + 16$ | $2$ | $4$ | $8$ | $((C_8 : C_2):C_2):C_2$ | $[2, 2, 2, 2]^{4}$ |
| 2.8.12.22 | $x^{8} + 4 x^{7} + 16 x^{3} + 48$ | $4$ | $2$ | $12$ | $(((C_4 \times C_2): C_2):C_2):C_2$ | $[2, 2, 2, 2]^{4}$ | |
| 5 | Data not computed | ||||||
| $31$ | 31.8.6.2 | $x^{8} + 713 x^{4} + 138384$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |
| 31.8.6.3 | $x^{8} - 31 x^{4} + 11532$ | $4$ | $2$ | $6$ | $C_8:C_2$ | $[\ ]_{4}^{4}$ | |