Normalized defining polynomial
\( x^{16} - x^{15} + 18 x^{14} - 31 x^{13} + 119 x^{12} - 294 x^{11} + 382 x^{10} - 957 x^{9} + 491 x^{8} + 328 x^{7} - 1362 x^{6} + 5016 x^{5} - 6105 x^{4} - 5084 x^{3} - 5268 x^{2} - 22251 x - 13093 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-321343496554700895669883=-\,811^{3}\cdot 84457^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.46$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $811, 84457$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{3666694305130288406035942982723} a^{15} + \frac{1662568876216036769853750440171}{3666694305130288406035942982723} a^{14} - \frac{407387851347443352765322673668}{3666694305130288406035942982723} a^{13} - \frac{1235070736322454354820056923596}{3666694305130288406035942982723} a^{12} + \frac{1417914469152228921146942789200}{3666694305130288406035942982723} a^{11} + \frac{982499002878990752558486480436}{3666694305130288406035942982723} a^{10} - \frac{992506855157176096065421702554}{3666694305130288406035942982723} a^{9} - \frac{181425127353438033127416639254}{3666694305130288406035942982723} a^{8} - \frac{626267975632460393103144337071}{3666694305130288406035942982723} a^{7} + \frac{1189682651161830870691478623347}{3666694305130288406035942982723} a^{6} - \frac{1233312671700456382563007209098}{3666694305130288406035942982723} a^{5} + \frac{1545984131993681034137681723456}{3666694305130288406035942982723} a^{4} + \frac{1636421629693372267632655431454}{3666694305130288406035942982723} a^{3} + \frac{907366880324911365680874713303}{3666694305130288406035942982723} a^{2} + \frac{528340231857765145443362073538}{3666694305130288406035942982723} a + \frac{51778888762303579908137624526}{3666694305130288406035942982723}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 70512.4728909 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 5160960 |
| The 100 conjugacy class representatives for t16n1946 are not computed |
| Character table for t16n1946 is not computed |
Intermediate fields
| 8.6.68494627.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }$ | $16$ | $16$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.6.0.1}{6} }$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/47.14.0.1}{14} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 811 | Data not computed | ||||||
| 84457 | Data not computed | ||||||