Normalized defining polynomial
\( x^{16} - 3 x^{15} - 15 x^{14} + 8 x^{13} + 236 x^{12} + 148 x^{11} - 3049 x^{10} - 2896 x^{9} + 20706 x^{8} + 35171 x^{7} - 18743 x^{6} - 31766 x^{5} + 88173 x^{4} + 108558 x^{3} - 59961 x^{2} - 129620 x - 48116 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-319384536834647064600389984779=-\,41^{15}\cdot 59^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $69.83$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $41, 59$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{12} + \frac{1}{4} a^{10} + \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{8} a^{14} - \frac{1}{8} a^{12} - \frac{3}{8} a^{11} - \frac{3}{8} a^{10} + \frac{1}{8} a^{9} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6} + \frac{3}{8} a^{5} + \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{8} a^{2} - \frac{1}{8} a - \frac{1}{4}$, $\frac{1}{22629542660236182267515567509408384} a^{15} + \frac{1235602613933452859777485496769415}{22629542660236182267515567509408384} a^{14} + \frac{741266952702770403333805302175879}{22629542660236182267515567509408384} a^{13} + \frac{1151491518994477389635408440774007}{11314771330118091133757783754704192} a^{12} - \frac{286914221127807410769426620068639}{2828692832529522783439445938676048} a^{11} - \frac{2058238475321771398501348577828675}{5657385665059045566878891877352096} a^{10} - \frac{2543380494664442130492911192054449}{22629542660236182267515567509408384} a^{9} - \frac{4280526462367643992528305561222421}{11314771330118091133757783754704192} a^{8} - \frac{2815453162504857703644042106001905}{11314771330118091133757783754704192} a^{7} - \frac{9561619854526343957385077311865905}{22629542660236182267515567509408384} a^{6} - \frac{5444399831095342527389955362941505}{22629542660236182267515567509408384} a^{5} - \frac{178891859438677962186813628106321}{1414346416264761391719722969338024} a^{4} - \frac{1433519233597160561490218114469267}{22629542660236182267515567509408384} a^{3} - \frac{424607478739377269814188519549781}{1414346416264761391719722969338024} a^{2} - \frac{351404625107293631487187140873641}{22629542660236182267515567509408384} a + \frac{637416445064139186055455968209873}{11314771330118091133757783754704192}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 336875783.526 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 34 conjugacy class representatives for t16n1251 |
| Character table for t16n1251 is not computed |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.4.68921.1, 8.6.11490502158979.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Arithmetically equvalently siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{2}$ | $16$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | $16$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | $16$ | $16$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{6}$ | $16$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{6}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | $16$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 41 | Data not computed | ||||||
| 59 | Data not computed | ||||||