Properties

Label 16.2.25961576340...0000.2
Degree $16$
Signature $[2, 7]$
Discriminant $-\,2^{16}\cdot 5^{10}\cdot 29^{4}\cdot 179^{3}$
Root discriminant $33.57$
Ramified primes $2, 5, 29, 179$
Class number $1$
Class group Trivial
Galois group 16T1574

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-4475, 0, -16375, 0, -20765, 0, -11620, 0, -3474, 0, -569, 0, -9, 0, 11, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 + 11*x^14 - 9*x^12 - 569*x^10 - 3474*x^8 - 11620*x^6 - 20765*x^4 - 16375*x^2 - 4475)
 
gp: K = bnfinit(x^16 + 11*x^14 - 9*x^12 - 569*x^10 - 3474*x^8 - 11620*x^6 - 20765*x^4 - 16375*x^2 - 4475, 1)
 

Normalized defining polynomial

\( x^{16} + 11 x^{14} - 9 x^{12} - 569 x^{10} - 3474 x^{8} - 11620 x^{6} - 20765 x^{4} - 16375 x^{2} - 4475 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[2, 7]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-2596157634085760000000000=-\,2^{16}\cdot 5^{10}\cdot 29^{4}\cdot 179^{3}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $33.57$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 29, 179$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{5} a^{8} - \frac{2}{5} a^{6} + \frac{1}{5} a^{4}$, $\frac{1}{5} a^{9} - \frac{2}{5} a^{7} + \frac{1}{5} a^{5}$, $\frac{1}{5} a^{10} + \frac{2}{5} a^{6} + \frac{2}{5} a^{4}$, $\frac{1}{5} a^{11} + \frac{2}{5} a^{7} + \frac{2}{5} a^{5}$, $\frac{1}{15} a^{12} + \frac{1}{15} a^{10} - \frac{7}{15} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3}$, $\frac{1}{15} a^{13} + \frac{1}{15} a^{11} - \frac{7}{15} a^{7} - \frac{1}{3} a^{5} + \frac{1}{3} a$, $\frac{1}{507245562525} a^{14} + \frac{1722706996}{507245562525} a^{12} + \frac{15813643272}{169081854175} a^{10} + \frac{42165172136}{507245562525} a^{8} + \frac{111362445871}{507245562525} a^{6} + \frac{915806558}{6763274167} a^{4} + \frac{14473735561}{101449112505} a^{2} + \frac{1931360705}{6763274167}$, $\frac{1}{507245562525} a^{15} + \frac{1722706996}{507245562525} a^{13} + \frac{15813643272}{169081854175} a^{11} + \frac{42165172136}{507245562525} a^{9} + \frac{111362445871}{507245562525} a^{7} + \frac{915806558}{6763274167} a^{5} + \frac{14473735561}{101449112505} a^{3} + \frac{1931360705}{6763274167} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $8$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 437097.313028 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1574:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 4096
The 88 conjugacy class representatives for t16n1574 are not computed
Character table for t16n1574 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 4.4.725.1, 8.6.94086875.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ R ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ $16$ ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$5$5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
$29$29.2.1.2$x^{2} + 58$$2$$1$$1$$C_2$$[\ ]_{2}$
29.2.1.2$x^{2} + 58$$2$$1$$1$$C_2$$[\ ]_{2}$
29.4.0.1$x^{4} - x + 19$$1$$4$$0$$C_4$$[\ ]^{4}$
29.4.2.1$x^{4} + 145 x^{2} + 7569$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
29.4.0.1$x^{4} - x + 19$$1$$4$$0$$C_4$$[\ ]^{4}$
179Data not computed