Normalized defining polynomial
\( x^{16} - 2 x^{15} - 13 x^{14} + 9 x^{13} - 18 x^{12} + 393 x^{11} - 327 x^{10} + 858 x^{9} - 2379 x^{8} - 189 x^{7} - 1866 x^{6} + 10311 x^{5} - 21710 x^{4} - 14516 x^{3} - 10408 x^{2} - 3120 x - 288 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2558639070806765618458574027=-\,17^{15}\cdot 19^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $51.64$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{6} a^{5} - \frac{1}{2} a^{2} - \frac{1}{3} a$, $\frac{1}{6} a^{6} - \frac{1}{2} a^{3} - \frac{1}{3} a^{2}$, $\frac{1}{6} a^{7} - \frac{1}{3} a^{3} - \frac{1}{2} a$, $\frac{1}{12} a^{8} - \frac{1}{6} a^{4} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{12} a^{9} + \frac{1}{4} a^{3} - \frac{1}{3} a$, $\frac{1}{72} a^{10} - \frac{1}{24} a^{9} - \frac{1}{12} a^{7} - \frac{1}{18} a^{6} - \frac{1}{12} a^{5} + \frac{1}{8} a^{4} - \frac{11}{24} a^{3} - \frac{7}{36} a^{2} + \frac{1}{3} a$, $\frac{1}{72} a^{11} - \frac{1}{24} a^{9} + \frac{1}{36} a^{7} - \frac{1}{12} a^{6} + \frac{1}{24} a^{5} - \frac{1}{4} a^{4} - \frac{35}{72} a^{3} + \frac{1}{6} a^{2} - \frac{1}{6} a$, $\frac{1}{144} a^{12} + \frac{1}{48} a^{9} - \frac{1}{36} a^{8} - \frac{1}{16} a^{6} - \frac{1}{12} a^{5} - \frac{2}{9} a^{4} - \frac{3}{16} a^{3} - \frac{1}{6} a - \frac{1}{2}$, $\frac{1}{288} a^{13} - \frac{1}{288} a^{12} - \frac{1}{288} a^{10} + \frac{5}{288} a^{9} + \frac{1}{72} a^{8} + \frac{5}{96} a^{7} + \frac{13}{288} a^{6} + \frac{1}{72} a^{5} - \frac{31}{288} a^{4} + \frac{5}{96} a^{3} - \frac{7}{18} a^{2} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{864} a^{14} - \frac{1}{288} a^{12} + \frac{1}{288} a^{11} - \frac{7}{288} a^{9} + \frac{1}{288} a^{8} + \frac{5}{72} a^{7} - \frac{7}{288} a^{6} - \frac{5}{288} a^{5} + \frac{11}{72} a^{4} - \frac{89}{288} a^{3} + \frac{19}{54} a^{2} - \frac{11}{36} a - \frac{5}{12}$, $\frac{1}{2222248106885766336} a^{15} + \frac{3366455379527}{1111124053442883168} a^{14} - \frac{164054002940233}{246916456320640704} a^{13} + \frac{1400960799303527}{740749368961922112} a^{12} + \frac{227109079242703}{41152742720106784} a^{11} + \frac{104963919285023}{82305485440213568} a^{10} - \frac{29823897949611769}{740749368961922112} a^{9} - \frac{13834964072498395}{370374684480961056} a^{8} + \frac{5573322641029907}{740749368961922112} a^{7} - \frac{18179068297704211}{740749368961922112} a^{6} + \frac{13390242972037055}{370374684480961056} a^{5} - \frac{139187967991051207}{740749368961922112} a^{4} + \frac{58636078695194867}{1111124053442883168} a^{3} - \frac{132721849393123681}{277781013360720792} a^{2} - \frac{19522014770937407}{92593671120240264} a + \frac{466810045794029}{15432278520040044}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 200097097.264 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $D_{16}$ |
| Character table for $D_{16}$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.2.93347.1, 8.2.2814512958107.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{8}$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | R | R | $16$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 17 | Data not computed | ||||||
| $19$ | 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |