Normalized defining polynomial
\( x^{16} + 96 x^{14} + 4027 x^{12} + 102629 x^{10} + 1484794 x^{8} + 7802516 x^{6} - 127502953 x^{4} - 2709088250 x^{2} - 16448598731 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-24069030761845230082571042816=-\,2^{16}\cdot 59^{5}\cdot 283^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $59.41$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 59, 283$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{59} a^{12} - \frac{22}{59} a^{10} + \frac{15}{59} a^{8} + \frac{28}{59} a^{6} + \frac{2}{59} a^{2}$, $\frac{1}{59} a^{13} - \frac{22}{59} a^{11} + \frac{15}{59} a^{9} + \frac{28}{59} a^{7} + \frac{2}{59} a^{3}$, $\frac{1}{701469897602440109152202176886687} a^{14} - \frac{876386192286416408681501215529}{701469897602440109152202176886687} a^{12} - \frac{297428842040658347571715796887981}{701469897602440109152202176886687} a^{10} - \frac{305915262162717949793217855746692}{701469897602440109152202176886687} a^{8} + \frac{696249111636050409639001050344}{11889320298346442528003426726893} a^{6} - \frac{196142548327590944868237141355701}{701469897602440109152202176886687} a^{4} - \frac{4604588717561760671359458876879}{11889320298346442528003426726893} a^{2} + \frac{284795545329025504822417608}{712063262762558694855568469}$, $\frac{1}{701469897602440109152202176886687} a^{15} - \frac{876386192286416408681501215529}{701469897602440109152202176886687} a^{13} - \frac{297428842040658347571715796887981}{701469897602440109152202176886687} a^{11} - \frac{305915262162717949793217855746692}{701469897602440109152202176886687} a^{9} + \frac{696249111636050409639001050344}{11889320298346442528003426726893} a^{7} - \frac{196142548327590944868237141355701}{701469897602440109152202176886687} a^{5} - \frac{4604588717561760671359458876879}{11889320298346442528003426726893} a^{3} + \frac{284795545329025504822417608}{712063262762558694855568469} a$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 20231513.9 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 3072 |
| The 36 conjugacy class representatives for t16n1540 |
| Character table for t16n1540 is not computed |
Intermediate fields
| 4.2.283.1, 8.2.4725251.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }$ | $16$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }$ | $16$ | $16$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $59$ | 59.2.1.2 | $x^{2} + 177$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 59.2.1.2 | $x^{2} + 177$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 59.3.0.1 | $x^{3} - x + 17$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 59.3.0.1 | $x^{3} - x + 17$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 59.6.3.2 | $x^{6} - 3481 x^{2} + 3491443$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 283 | Data not computed | ||||||