Normalized defining polynomial
\( x^{16} - 8 x^{15} + 40 x^{14} - 119 x^{13} + 183 x^{12} + 106 x^{11} - 1631 x^{10} + 4629 x^{9} - 9140 x^{8} + 10263 x^{7} - 12907 x^{6} + 11631 x^{5} - 31738 x^{4} + 42761 x^{3} - 84733 x^{2} + 75162 x - 72329 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-23842965126465199951171875=-\,3^{12}\cdot 5^{12}\cdot 179^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $38.56$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 179$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{15} a^{12} + \frac{1}{15} a^{10} - \frac{4}{15} a^{9} + \frac{2}{5} a^{8} - \frac{1}{5} a^{7} + \frac{7}{15} a^{6} + \frac{1}{5} a^{5} + \frac{4}{15} a^{4} - \frac{1}{3} a^{3} + \frac{2}{5} a^{2} - \frac{1}{15} a + \frac{1}{15}$, $\frac{1}{15} a^{13} + \frac{1}{15} a^{11} - \frac{4}{15} a^{10} + \frac{2}{5} a^{9} - \frac{1}{5} a^{8} + \frac{7}{15} a^{7} + \frac{1}{5} a^{6} + \frac{4}{15} a^{5} - \frac{1}{3} a^{4} + \frac{2}{5} a^{3} - \frac{1}{15} a^{2} + \frac{1}{15} a$, $\frac{1}{15} a^{14} - \frac{4}{15} a^{11} + \frac{1}{3} a^{10} + \frac{1}{15} a^{9} + \frac{1}{15} a^{8} + \frac{2}{5} a^{7} - \frac{1}{5} a^{6} + \frac{7}{15} a^{5} + \frac{2}{15} a^{4} + \frac{4}{15} a^{3} - \frac{1}{3} a^{2} + \frac{1}{15} a - \frac{1}{15}$, $\frac{1}{1361367302417622875993701697385} a^{15} - \frac{19748070823766595849138606584}{1361367302417622875993701697385} a^{14} - \frac{2580902594044220176458370498}{1361367302417622875993701697385} a^{13} + \frac{5228096518327193151812797639}{272273460483524575198740339477} a^{12} - \frac{100514650071393782013477991784}{453789100805874291997900565795} a^{11} - \frac{68642521237708910076220112408}{1361367302417622875993701697385} a^{10} - \frac{459005139472790041695146899522}{1361367302417622875993701697385} a^{9} + \frac{133899236952990442007123495714}{272273460483524575198740339477} a^{8} - \frac{106514921196987888517526936633}{272273460483524575198740339477} a^{7} - \frac{386149371902003983148394680912}{1361367302417622875993701697385} a^{6} + \frac{68225281074563275979761134449}{1361367302417622875993701697385} a^{5} + \frac{76482330314672508961595074472}{1361367302417622875993701697385} a^{4} - \frac{329567906651368188993885310279}{1361367302417622875993701697385} a^{3} - \frac{156557681619432497564344881064}{453789100805874291997900565795} a^{2} - \frac{6630496811482417368301374967}{1361367302417622875993701697385} a - \frac{23104019416973804748270945427}{1361367302417622875993701697385}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 366900.531256 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2048 |
| The 59 conjugacy class representatives for t16n1354 are not computed |
| Character table for t16n1354 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{15})^+\), 8.6.226546875.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $16$ | R | R | $16$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | $16$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | $16$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.8.6.3 | $x^{8} - 3 x^{4} + 18$ | $4$ | $2$ | $6$ | $C_8:C_2$ | $[\ ]_{4}^{4}$ |
| 3.8.6.3 | $x^{8} - 3 x^{4} + 18$ | $4$ | $2$ | $6$ | $C_8:C_2$ | $[\ ]_{4}^{4}$ | |
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 179 | Data not computed | ||||||