Normalized defining polynomial
\( x^{16} - 3 x^{15} + 2 x^{14} + 28 x^{13} - 80 x^{12} - 200 x^{11} + 450 x^{10} + 1182 x^{9} - 736 x^{8} - 3960 x^{7} - 3584 x^{6} + 8672 x^{5} + 15269 x^{4} - 4171 x^{3} - 28458 x^{2} + 2916 x + 13824 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2130360314266888344019505827=-\,43^{7}\cdot 97^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $51.05$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $43, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{12} a^{9} + \frac{1}{4} a^{3} - \frac{1}{3} a$, $\frac{1}{24} a^{10} - \frac{1}{24} a^{9} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} + \frac{1}{8} a^{4} + \frac{1}{8} a^{3} + \frac{1}{12} a^{2} + \frac{1}{6} a$, $\frac{1}{24} a^{11} - \frac{1}{24} a^{9} - \frac{1}{4} a^{7} - \frac{1}{8} a^{5} - \frac{1}{4} a^{4} - \frac{7}{24} a^{3} + \frac{1}{4} a^{2} - \frac{1}{3} a$, $\frac{1}{144} a^{12} + \frac{1}{72} a^{11} - \frac{1}{72} a^{10} + \frac{5}{144} a^{9} + \frac{1}{24} a^{8} + \frac{3}{16} a^{6} - \frac{1}{24} a^{5} - \frac{5}{72} a^{4} - \frac{65}{144} a^{3} - \frac{17}{72} a^{2} + \frac{7}{36} a + \frac{1}{3}$, $\frac{1}{144} a^{13} - \frac{1}{48} a^{10} + \frac{1}{72} a^{9} - \frac{1}{12} a^{8} - \frac{1}{16} a^{7} + \frac{1}{12} a^{6} - \frac{1}{9} a^{5} + \frac{3}{16} a^{4} + \frac{1}{8} a^{3} + \frac{1}{4} a^{2} + \frac{5}{18} a + \frac{1}{3}$, $\frac{1}{2448} a^{14} + \frac{1}{1224} a^{13} - \frac{1}{612} a^{12} - \frac{41}{2448} a^{11} + \frac{1}{72} a^{10} - \frac{11}{306} a^{9} + \frac{77}{816} a^{8} - \frac{19}{408} a^{7} - \frac{13}{153} a^{6} - \frac{575}{2448} a^{5} - \frac{61}{1224} a^{4} + \frac{23}{612} a^{3} + \frac{151}{306} a^{2} - \frac{74}{153} a + \frac{1}{51}$, $\frac{1}{1260537381481648608} a^{15} + \frac{1013955105287}{16160735660021136} a^{14} + \frac{492363625876639}{157567172685206076} a^{13} - \frac{743134823568629}{315134345370412152} a^{12} + \frac{2805428325585937}{315134345370412152} a^{11} + \frac{2103650930201833}{315134345370412152} a^{10} + \frac{8047239049875085}{210089563580274768} a^{9} + \frac{2690408367547}{237657877353252} a^{8} + \frac{72844809229771187}{315134345370412152} a^{7} - \frac{7894923349126457}{105044781790137384} a^{6} + \frac{2001428872009843}{315134345370412152} a^{5} - \frac{2085325632788117}{18537314433553656} a^{4} - \frac{506779629590421199}{1260537381481648608} a^{3} - \frac{156372689267633453}{630268690740824304} a^{2} - \frac{44715292388344319}{105044781790137384} a + \frac{1401448549200463}{4376865907922391}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1122360429.86 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $D_{16}$ |
| Character table for $D_{16}$ |
Intermediate fields
| \(\Q(\sqrt{97}) \), 4.2.404587.1, 8.2.7038697544467.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | $16$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | $16$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 43 | Data not computed | ||||||
| $97$ | 97.4.2.1 | $x^{4} + 873 x^{2} + 235225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 97.4.2.1 | $x^{4} + 873 x^{2} + 235225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 97.4.2.1 | $x^{4} + 873 x^{2} + 235225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 97.4.2.1 | $x^{4} + 873 x^{2} + 235225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |