Normalized defining polynomial
\( x^{16} + 3x^{14} - 3x^{12} - 14x^{10} - 9x^{8} + 2x^{6} + 8x^{4} - 6x^{2} - 1 \)
Invariants
| Degree: | $16$ |
| |
| Signature: | $[2, 7]$ |
| |
| Discriminant: |
\(-2020065264100000000\)
\(\medspace = -\,2^{8}\cdot 5^{8}\cdot 13^{4}\cdot 29^{4}\)
|
| |
| Root discriminant: | \(13.93\) |
| |
| Galois root discriminant: | $2^{15/8}5^{1/2}13^{1/2}29^{1/2}\approx 159.2527421555184$ | ||
| Ramified primes: |
\(2\), \(5\), \(13\), \(29\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-1}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2}a^{12}-\frac{1}{2}a^{10}-\frac{1}{2}a^{9}-\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{2}a^{13}-\frac{1}{2}a^{11}-\frac{1}{2}a^{10}-\frac{1}{2}a^{8}-\frac{1}{2}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{1142}a^{14}-\frac{65}{571}a^{12}-\frac{1}{2}a^{11}+\frac{157}{1142}a^{10}+\frac{116}{571}a^{8}+\frac{270}{571}a^{6}-\frac{443}{1142}a^{4}+\frac{57}{571}a^{2}-\frac{1}{2}a+\frac{249}{1142}$, $\frac{1}{1142}a^{15}-\frac{65}{571}a^{13}+\frac{157}{1142}a^{11}-\frac{1}{2}a^{10}-\frac{339}{1142}a^{9}-\frac{31}{1142}a^{7}+\frac{64}{571}a^{5}-\frac{457}{1142}a^{3}-\frac{161}{571}a-\frac{1}{2}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $8$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$a$, $\frac{146}{571}a^{14}+\frac{434}{571}a^{12}-\frac{489}{571}a^{10}-\frac{2101}{571}a^{8}-\frac{1100}{571}a^{6}+\frac{416}{571}a^{4}+\frac{1227}{571}a^{2}-\frac{190}{571}$, $\frac{133}{571}a^{14}+\frac{411}{571}a^{12}-\frac{246}{571}a^{10}-\frac{1691}{571}a^{8}-\frac{1839}{571}a^{6}-\frac{677}{571}a^{4}+\frac{887}{571}a^{2}-\frac{572}{571}$, $\frac{154}{571}a^{15}+\frac{536}{571}a^{13}-\frac{375}{571}a^{11}-\frac{2529}{571}a^{9}-\frac{1919}{571}a^{7}+\frac{298}{571}a^{5}+\frac{2139}{571}a^{3}-\frac{482}{571}a$, $\frac{1}{1142}a^{15}+\frac{21}{1142}a^{14}-\frac{65}{571}a^{13}+\frac{125}{1142}a^{12}-\frac{207}{571}a^{11}-\frac{129}{1142}a^{10}+\frac{116}{571}a^{9}-\frac{419}{571}a^{8}+\frac{841}{571}a^{7}-\frac{40}{571}a^{6}+\frac{1841}{1142}a^{5}+\frac{975}{1142}a^{4}+\frac{628}{571}a^{3}+\frac{681}{1142}a^{2}-\frac{161}{571}a-\frac{481}{1142}$, $\frac{1}{1142}a^{15}-\frac{21}{1142}a^{14}-\frac{65}{571}a^{13}-\frac{125}{1142}a^{12}-\frac{207}{571}a^{11}+\frac{129}{1142}a^{10}+\frac{116}{571}a^{9}+\frac{419}{571}a^{8}+\frac{841}{571}a^{7}+\frac{40}{571}a^{6}+\frac{1841}{1142}a^{5}-\frac{975}{1142}a^{4}+\frac{628}{571}a^{3}-\frac{681}{1142}a^{2}-\frac{161}{571}a+\frac{481}{1142}$, $\frac{1}{1142}a^{15}-\frac{287}{1142}a^{14}-\frac{65}{571}a^{13}-\frac{947}{1142}a^{12}-\frac{207}{571}a^{11}+\frac{621}{1142}a^{10}+\frac{116}{571}a^{9}+\frac{2110}{571}a^{8}+\frac{841}{571}a^{7}+\frac{1879}{571}a^{6}+\frac{1841}{1142}a^{5}+\frac{379}{1142}a^{4}+\frac{628}{571}a^{3}-\frac{2455}{1142}a^{2}-\frac{161}{571}a+\frac{1625}{1142}$, $\frac{149}{1142}a^{15}+\frac{51}{571}a^{14}+\frac{615}{1142}a^{13}+\frac{222}{571}a^{12}-\frac{9}{571}a^{11}+\frac{13}{571}a^{10}-\frac{2547}{1142}a^{9}-\frac{2031}{1142}a^{8}-\frac{3477}{1142}a^{7}-\frac{2591}{1142}a^{6}-\frac{742}{571}a^{5}-\frac{77}{1142}a^{4}+\frac{1070}{571}a^{3}+\frac{1921}{1142}a^{2}+\frac{557}{1142}a+\frac{845}{1142}$
|
| |
| Regulator: | \( 441.631865837 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{7}\cdot 441.631865837 \cdot 1}{2\cdot\sqrt{2020065264100000000}}\cr\approx \mathstrut & 0.240251869633 \end{aligned}\]
Galois group
$C_2^7.C_2\wr D_4$ (as 16T1778):
| A solvable group of order 16384 |
| The 148 conjugacy class representatives for $C_2^7.C_2\wr D_4$ |
| Character table for $C_2^7.C_2\wr D_4$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.725.1, 8.4.88830625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Minimal sibling: | 16.4.3059980518400000000.3 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.8.0.1}{8} }{,}\,{\href{/padicField/3.4.0.1}{4} }^{2}$ | R | ${\href{/padicField/7.8.0.1}{8} }{,}\,{\href{/padicField/7.4.0.1}{4} }^{2}$ | ${\href{/padicField/11.8.0.1}{8} }{,}\,{\href{/padicField/11.4.0.1}{4} }{,}\,{\href{/padicField/11.2.0.1}{2} }{,}\,{\href{/padicField/11.1.0.1}{1} }^{2}$ | R | ${\href{/padicField/17.8.0.1}{8} }^{2}$ | ${\href{/padicField/19.4.0.1}{4} }^{3}{,}\,{\href{/padicField/19.1.0.1}{1} }^{4}$ | ${\href{/padicField/23.4.0.1}{4} }^{3}{,}\,{\href{/padicField/23.2.0.1}{2} }^{2}$ | R | ${\href{/padicField/31.4.0.1}{4} }^{3}{,}\,{\href{/padicField/31.2.0.1}{2} }^{2}$ | ${\href{/padicField/37.8.0.1}{8} }^{2}$ | ${\href{/padicField/41.8.0.1}{8} }{,}\,{\href{/padicField/41.4.0.1}{4} }{,}\,{\href{/padicField/41.2.0.1}{2} }^{2}$ | ${\href{/padicField/43.8.0.1}{8} }{,}\,{\href{/padicField/43.4.0.1}{4} }^{2}$ | ${\href{/padicField/47.8.0.1}{8} }{,}\,{\href{/padicField/47.4.0.1}{4} }^{2}$ | ${\href{/padicField/53.8.0.1}{8} }^{2}$ | ${\href{/padicField/59.8.0.1}{8} }{,}\,{\href{/padicField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.4.1.0a1.1 | $x^{4} + x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ |
| 2.4.1.0a1.1 | $x^{4} + x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | |
| 2.4.2.8a4.2 | $x^{8} + 2 x^{7} + 2 x^{5} + 4 x^{4} + 2 x^{3} + x^{2} + 2 x + 7$ | $2$ | $4$ | $8$ | $((C_8 : C_2):C_2):C_2$ | $$[2, 2, 2, 2]^{4}$$ | |
|
\(5\)
| 5.8.2.8a1.2 | $x^{16} + 2 x^{12} + 6 x^{10} + 8 x^{9} + 5 x^{8} + 6 x^{6} + 8 x^{5} + 13 x^{4} + 24 x^{3} + 28 x^{2} + 16 x + 9$ | $2$ | $8$ | $8$ | $C_8\times C_2$ | $$[\ ]_{2}^{8}$$ |
|
\(13\)
| 13.2.1.0a1.1 | $x^{2} + 12 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
| 13.2.1.0a1.1 | $x^{2} + 12 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 13.2.1.0a1.1 | $x^{2} + 12 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 13.2.1.0a1.1 | $x^{2} + 12 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 13.4.2.4a1.2 | $x^{8} + 6 x^{6} + 24 x^{5} + 13 x^{4} + 72 x^{3} + 156 x^{2} + 48 x + 17$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ | |
|
\(29\)
| 29.2.1.0a1.1 | $x^{2} + 24 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
| 29.2.1.0a1.1 | $x^{2} + 24 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 29.2.1.0a1.1 | $x^{2} + 24 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 29.2.1.0a1.1 | $x^{2} + 24 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 29.2.2.2a1.2 | $x^{4} + 48 x^{3} + 580 x^{2} + 96 x + 33$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 29.2.2.2a1.2 | $x^{4} + 48 x^{3} + 580 x^{2} + 96 x + 33$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |