Normalized defining polynomial
\( x^{16} - 3 x^{15} + 5 x^{14} - 4 x^{13} - x^{12} + 6 x^{11} - 6 x^{10} - 8 x^{9} + 20 x^{8} - 19 x^{7} + \cdots - 1 \)
Invariants
Degree: | $16$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[2, 7]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(-19666546293359375\) \(\medspace = -\,5^{8}\cdot 31^{2}\cdot 71\cdot 859^{2}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(10.43\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $5^{1/2}31^{1/2}71^{1/2}859^{1/2}\approx 3074.621114869278$ | ||
Ramified primes: | \(5\), \(31\), \(71\), \(859\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{-71}) \) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{5173031}a^{15}-\frac{1243229}{5173031}a^{14}+\frac{895486}{5173031}a^{13}+\frac{1696701}{5173031}a^{12}-\frac{1811712}{5173031}a^{11}-\frac{1272668}{5173031}a^{10}+\frac{1031364}{5173031}a^{9}-\frac{38426}{5173031}a^{8}-\frac{738989}{5173031}a^{7}+\frac{32895}{5173031}a^{6}+\frac{2063827}{5173031}a^{5}-\frac{702022}{5173031}a^{4}-\frac{1095238}{5173031}a^{3}-\frac{1342935}{5173031}a^{2}+\frac{1818220}{5173031}a+\frac{978349}{5173031}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $8$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{7278181}{5173031}a^{15}-\frac{17820675}{5173031}a^{14}+\frac{28126190}{5173031}a^{13}-\frac{17777451}{5173031}a^{12}-\frac{10124461}{5173031}a^{11}+\frac{33310165}{5173031}a^{10}-\frac{27954596}{5173031}a^{9}-\frac{63884525}{5173031}a^{8}+\frac{101206869}{5173031}a^{7}-\frac{95571305}{5173031}a^{6}+\frac{53939452}{5173031}a^{5}+\frac{31959152}{5173031}a^{4}-\frac{72089310}{5173031}a^{3}+\frac{2518374}{5173031}a^{2}+\frac{17427604}{5173031}a+\frac{6700165}{5173031}$, $a$, $\frac{2184305}{5173031}a^{15}-\frac{3524364}{5173031}a^{14}+\frac{3584603}{5173031}a^{13}+\frac{3051506}{5173031}a^{12}-\frac{9422439}{5173031}a^{11}+\frac{9015164}{5173031}a^{10}-\frac{74232}{5173031}a^{9}-\frac{27541110}{5173031}a^{8}+\frac{15225595}{5173031}a^{7}-\frac{687615}{5173031}a^{6}-\frac{15402746}{5173031}a^{5}+\frac{26933713}{5173031}a^{4}-\frac{19096361}{5173031}a^{3}-\frac{12406625}{5173031}a^{2}+\frac{9390191}{5173031}a+\frac{7641190}{5173031}$, $\frac{74425}{5173031}a^{15}+\frac{2687172}{5173031}a^{14}-\frac{7958885}{5173031}a^{13}+\frac{13631277}{5173031}a^{12}-\frac{11958647}{5173031}a^{11}-\frac{118290}{5173031}a^{10}+\frac{12177784}{5173031}a^{9}-\frac{14688000}{5173031}a^{8}-\frac{20282857}{5173031}a^{7}+\frac{47923991}{5173031}a^{6}-\frac{49042287}{5173031}a^{5}+\frac{41009998}{5173031}a^{4}-\frac{1638683}{5173031}a^{3}-\frac{25670579}{5173031}a^{2}+\frac{4878602}{5173031}a+\frac{3213000}{5173031}$, $\frac{3396808}{5173031}a^{15}-\frac{6356182}{5173031}a^{14}+\frac{10396440}{5173031}a^{13}-\frac{4594281}{5173031}a^{12}-\frac{3562518}{5173031}a^{11}+\frac{10394460}{5173031}a^{10}-\frac{6990142}{5173031}a^{9}-\frac{30864202}{5173031}a^{8}+\frac{25064731}{5173031}a^{7}-\frac{35681657}{5173031}a^{6}+\frac{15221512}{5173031}a^{5}+\frac{9192480}{5173031}a^{4}-\frac{14149972}{5173031}a^{3}-\frac{10155060}{5173031}a^{2}-\frac{4718543}{5173031}a+\frac{5134972}{5173031}$, $\frac{3985756}{5173031}a^{15}-\frac{7608503}{5173031}a^{14}+\frac{9401687}{5173031}a^{13}+\frac{14059}{5173031}a^{12}-\frac{13174403}{5173031}a^{11}+\frac{16274910}{5173031}a^{10}-\frac{4525090}{5173031}a^{9}-\frac{45288518}{5173031}a^{8}+\frac{37107375}{5173031}a^{7}-\frac{14546168}{5173031}a^{6}-\frac{5088562}{5173031}a^{5}+\frac{40280485}{5173031}a^{4}-\frac{32317237}{5173031}a^{3}-\frac{24327850}{5173031}a^{2}+\frac{9723986}{5173031}a+\frac{14109951}{5173031}$, $\frac{236979}{5173031}a^{15}+\frac{469352}{5173031}a^{14}-\frac{1873919}{5173031}a^{13}+\frac{3498773}{5173031}a^{12}-\frac{1990203}{5173031}a^{11}-\frac{2709641}{5173031}a^{10}+\frac{6586730}{5173031}a^{9}-\frac{6793525}{5173031}a^{8}-\frac{7428819}{5173031}a^{7}+\frac{15185581}{5173031}a^{6}-\frac{10903324}{5173031}a^{5}+\frac{205422}{5173031}a^{4}+\frac{8424423}{5173031}a^{3}-\frac{18045338}{5173031}a^{2}+\frac{2686297}{5173031}a+\frac{3264313}{5173031}$, $\frac{1281339}{5173031}a^{15}-\frac{4291429}{5173031}a^{14}+\frac{6648737}{5173031}a^{13}-\frac{5056638}{5173031}a^{12}-\frac{4062025}{5173031}a^{11}+\frac{11630895}{5173031}a^{10}-\frac{11794081}{5173031}a^{9}-\frac{10169418}{5173031}a^{8}+\frac{33071310}{5173031}a^{7}-\frac{26075338}{5173031}a^{6}+\frac{13750184}{5173031}a^{5}+\frac{20539194}{5173031}a^{4}-\frac{31314002}{5173031}a^{3}+\frac{17560968}{5173031}a^{2}+\frac{4090265}{5173031}a-\frac{4565043}{5173031}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 28.6747805181 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{7}\cdot 28.6747805181 \cdot 1}{2\cdot\sqrt{19666546293359375}}\cr\approx \mathstrut & 0.158097545411 \end{aligned}\]
Galois group
$C_2^6.S_4^2:D_4$ (as 16T1905):
A solvable group of order 294912 |
The 230 conjugacy class representatives for $C_2^6.S_4^2:D_4$ |
Character table for $C_2^6.S_4^2:D_4$ |
Intermediate fields
\(\Q(\sqrt{5}) \), 8.4.16643125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 16 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.8.0.1}{8} }^{2}$ | ${\href{/padicField/3.8.0.1}{8} }^{2}$ | R | ${\href{/padicField/7.12.0.1}{12} }{,}\,{\href{/padicField/7.2.0.1}{2} }^{2}$ | ${\href{/padicField/11.8.0.1}{8} }{,}\,{\href{/padicField/11.4.0.1}{4} }^{2}$ | $16$ | $16$ | ${\href{/padicField/19.8.0.1}{8} }{,}\,{\href{/padicField/19.3.0.1}{3} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }$ | ${\href{/padicField/23.8.0.1}{8} }{,}\,{\href{/padicField/23.4.0.1}{4} }^{2}$ | ${\href{/padicField/29.6.0.1}{6} }{,}\,{\href{/padicField/29.3.0.1}{3} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | R | ${\href{/padicField/37.6.0.1}{6} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }^{2}$ | ${\href{/padicField/41.8.0.1}{8} }{,}\,{\href{/padicField/41.4.0.1}{4} }{,}\,{\href{/padicField/41.2.0.1}{2} }{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.4.0.1}{4} }^{4}$ | ${\href{/padicField/47.12.0.1}{12} }{,}\,{\href{/padicField/47.2.0.1}{2} }^{2}$ | $16$ | ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.3.0.1}{3} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(5\) | 5.16.8.1 | $x^{16} + 160 x^{15} + 11240 x^{14} + 453600 x^{13} + 11536702 x^{12} + 190484240 x^{11} + 2020220586 x^{10} + 13041178608 x^{9} + 45239382035 x^{8} + 65384309200 x^{7} + 52374358166 x^{6} + 35488260768 x^{5} + 46408266743 x^{4} + 66345171264 x^{3} + 136057926318 x^{2} + 159173865296 x + 74196697609$ | $2$ | $8$ | $8$ | $C_8\times C_2$ | $[\ ]_{2}^{8}$ |
\(31\) | 31.2.0.1 | $x^{2} + 29 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
31.2.0.1 | $x^{2} + 29 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
31.2.0.1 | $x^{2} + 29 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
31.2.0.1 | $x^{2} + 29 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
31.4.2.1 | $x^{4} + 58 x^{3} + 909 x^{2} + 1972 x + 26855$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
31.4.0.1 | $x^{4} + 3 x^{2} + 16 x + 3$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
\(71\) | $\Q_{71}$ | $x + 64$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{71}$ | $x + 64$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
71.2.0.1 | $x^{2} + 69 x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
71.2.0.1 | $x^{2} + 69 x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
71.2.1.1 | $x^{2} + 497$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
71.2.0.1 | $x^{2} + 69 x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
71.2.0.1 | $x^{2} + 69 x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
71.4.0.1 | $x^{4} + 4 x^{2} + 41 x + 7$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
\(859\) | $\Q_{859}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{859}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{859}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{859}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $4$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |