Normalized defining polynomial
\( x^{16} - 6 x^{15} + 18 x^{14} - 36 x^{13} + 51 x^{12} - 46 x^{11} + 18 x^{10} - 4 x^{9} + 44 x^{8} + \cdots - 1 \)
Invariants
Degree: | $16$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[2, 7]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(-195238297600000000\) \(\medspace = -\,2^{24}\cdot 5^{8}\cdot 31^{3}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(12.04\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{15/8}5^{1/2}31^{1/2}\approx 45.66643307539152$ | ||
Ramified primes: | \(2\), \(5\), \(31\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{-31}) \) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{7}a^{14}-\frac{3}{7}a^{13}-\frac{3}{7}a^{12}-\frac{2}{7}a^{11}-\frac{3}{7}a^{10}-\frac{3}{7}a^{9}+\frac{3}{7}a^{8}-\frac{1}{7}a^{7}-\frac{2}{7}a^{6}+\frac{2}{7}a^{4}+\frac{1}{7}a^{3}+\frac{2}{7}a^{2}-\frac{1}{7}a-\frac{3}{7}$, $\frac{1}{2279459}a^{15}-\frac{3807}{175343}a^{14}+\frac{7349}{61607}a^{13}-\frac{294001}{2279459}a^{12}+\frac{115223}{325637}a^{11}-\frac{320952}{2279459}a^{10}+\frac{993248}{2279459}a^{9}+\frac{771496}{2279459}a^{8}-\frac{774547}{2279459}a^{7}+\frac{6366}{2279459}a^{6}+\frac{846540}{2279459}a^{5}+\frac{865464}{2279459}a^{4}-\frac{33365}{2279459}a^{3}+\frac{87419}{2279459}a^{2}-\frac{818585}{2279459}a+\frac{64114}{2279459}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $8$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{2308038}{2279459}a^{15}-\frac{989357}{175343}a^{14}+\frac{959316}{61607}a^{13}-\frac{9328015}{325637}a^{12}+\frac{83529209}{2279459}a^{11}-\frac{60512674}{2279459}a^{10}+\frac{5467494}{2279459}a^{9}-\frac{3879093}{2279459}a^{8}+\frac{105228387}{2279459}a^{7}-\frac{225437973}{2279459}a^{6}+\frac{249829324}{2279459}a^{5}-\frac{176483570}{2279459}a^{4}+\frac{65054201}{2279459}a^{3}-\frac{84391}{325637}a^{2}-\frac{640897}{325637}a+\frac{2885340}{2279459}$, $\frac{358850}{61607}a^{15}-\frac{150926}{4739}a^{14}+\frac{774078}{8801}a^{13}-\frac{10049261}{61607}a^{12}+\frac{12975387}{61607}a^{11}-\frac{1372781}{8801}a^{10}+\frac{1304077}{61607}a^{9}-\frac{617275}{61607}a^{8}+\frac{15316796}{61607}a^{7}-\frac{34210753}{61607}a^{6}+\frac{39394044}{61607}a^{5}-\frac{28611886}{61607}a^{4}+\frac{10367345}{61607}a^{3}+\frac{155765}{61607}a^{2}-\frac{1665038}{61607}a+\frac{623601}{61607}$, $\frac{18965735}{2279459}a^{15}-\frac{1114748}{25049}a^{14}+\frac{7439416}{61607}a^{13}-\frac{502965959}{2279459}a^{12}+\frac{637671325}{2279459}a^{11}-\frac{452455686}{2279459}a^{10}+\frac{39334909}{2279459}a^{9}-\frac{42616345}{2279459}a^{8}+\frac{803239244}{2279459}a^{7}-\frac{1716342833}{2279459}a^{6}+\frac{1914838369}{2279459}a^{5}-\frac{193474323}{325637}a^{4}+\frac{456615590}{2279459}a^{3}+\frac{16714891}{2279459}a^{2}-\frac{75377129}{2279459}a+\frac{27550310}{2279459}$, $\frac{12672936}{2279459}a^{15}-\frac{739365}{25049}a^{14}+\frac{4903482}{61607}a^{13}-\frac{329885015}{2279459}a^{12}+\frac{416105124}{2279459}a^{11}-\frac{292134165}{2279459}a^{10}+\frac{23476155}{2279459}a^{9}-\frac{35104192}{2279459}a^{8}+\frac{537269179}{2279459}a^{7}-\frac{1124103824}{2279459}a^{6}+\frac{1241133340}{2279459}a^{5}-\frac{125522190}{325637}a^{4}+\frac{300859434}{2279459}a^{3}+\frac{1195566}{2279459}a^{2}-\frac{43404169}{2279459}a+\frac{18670737}{2279459}$, $\frac{1105608}{325637}a^{15}-\frac{3243741}{175343}a^{14}+\frac{3140677}{61607}a^{13}-\frac{215113890}{2279459}a^{12}+\frac{277282249}{2279459}a^{11}-\frac{204788715}{2279459}a^{10}+\frac{27849516}{2279459}a^{9}-\frac{15719090}{2279459}a^{8}+\frac{331381431}{2279459}a^{7}-\frac{732480743}{2279459}a^{6}+\frac{119924254}{325637}a^{5}-\frac{609454537}{2279459}a^{4}+\frac{222831158}{2279459}a^{3}-\frac{2995334}{2279459}a^{2}-\frac{32257516}{2279459}a+\frac{12444448}{2279459}$, $\frac{13994124}{2279459}a^{15}-\frac{5675198}{175343}a^{14}+\frac{5341327}{61607}a^{13}-\frac{51038870}{325637}a^{12}+\frac{447328663}{2279459}a^{11}-\frac{308032694}{2279459}a^{10}+\frac{17014500}{2279459}a^{9}-\frac{39758864}{2279459}a^{8}+\frac{590885236}{2279459}a^{7}-\frac{1217756908}{2279459}a^{6}+\frac{1329168821}{2279459}a^{5}-\frac{928937085}{2279459}a^{4}+\frac{302856326}{2279459}a^{3}+\frac{1613275}{325637}a^{2}-\frac{6905745}{325637}a+\frac{19970455}{2279459}$, $\frac{11212121}{2279459}a^{15}-\frac{4580556}{175343}a^{14}+\frac{4349792}{61607}a^{13}-\frac{293679608}{2279459}a^{12}+\frac{372463438}{2279459}a^{11}-\frac{265437377}{2279459}a^{10}+\frac{27984874}{2279459}a^{9}-\frac{4858144}{325637}a^{8}+\frac{67611000}{325637}a^{7}-\frac{996135327}{2279459}a^{6}+\frac{1113573462}{2279459}a^{5}-\frac{802202028}{2279459}a^{4}+\frac{40660921}{325637}a^{3}-\frac{6172102}{2279459}a^{2}-\frac{38533506}{2279459}a+\frac{16761034}{2279459}$, $\frac{2201662}{2279459}a^{15}-\frac{782716}{175343}a^{14}+\frac{642882}{61607}a^{13}-\frac{36818427}{2279459}a^{12}+\frac{35438757}{2279459}a^{11}-\frac{5301334}{2279459}a^{10}-\frac{26059338}{2279459}a^{9}-\frac{5826486}{2279459}a^{8}+\frac{90135743}{2279459}a^{7}-\frac{19253649}{325637}a^{6}+\frac{88755949}{2279459}a^{5}-\frac{16124716}{2279459}a^{4}-\frac{38380788}{2279459}a^{3}+\frac{23438666}{2279459}a^{2}-\frac{3324667}{2279459}a-\frac{478757}{325637}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 109.456398528 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{7}\cdot 109.456398528 \cdot 1}{2\cdot\sqrt{195238297600000000}}\cr\approx \mathstrut & 0.191534813192 \end{aligned}\]
Galois group
$D_8\wr C_2$ (as 16T972):
A solvable group of order 512 |
The 35 conjugacy class representatives for $D_8\wr C_2$ |
Character table for $D_8\wr C_2$ |
Intermediate fields
\(\Q(\sqrt{5}) \), 4.2.400.1, 8.2.4960000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 16 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | $16$ | R | ${\href{/padicField/7.4.0.1}{4} }^{4}$ | ${\href{/padicField/11.8.0.1}{8} }{,}\,{\href{/padicField/11.4.0.1}{4} }^{2}$ | ${\href{/padicField/13.4.0.1}{4} }^{3}{,}\,{\href{/padicField/13.2.0.1}{2} }^{2}$ | ${\href{/padicField/17.4.0.1}{4} }^{3}{,}\,{\href{/padicField/17.2.0.1}{2} }^{2}$ | ${\href{/padicField/19.8.0.1}{8} }{,}\,{\href{/padicField/19.2.0.1}{2} }^{3}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | $16$ | ${\href{/padicField/29.4.0.1}{4} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }^{3}{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | R | ${\href{/padicField/37.4.0.1}{4} }^{3}{,}\,{\href{/padicField/37.2.0.1}{2} }^{2}$ | ${\href{/padicField/41.2.0.1}{2} }^{8}$ | $16$ | ${\href{/padicField/47.4.0.1}{4} }^{4}$ | ${\href{/padicField/53.4.0.1}{4} }^{3}{,}\,{\href{/padicField/53.2.0.1}{2} }^{2}$ | ${\href{/padicField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | Deg $16$ | $4$ | $4$ | $24$ | |||
\(5\) | 5.16.8.1 | $x^{16} + 160 x^{15} + 11240 x^{14} + 453600 x^{13} + 11536702 x^{12} + 190484240 x^{11} + 2020220586 x^{10} + 13041178608 x^{9} + 45239382035 x^{8} + 65384309200 x^{7} + 52374358166 x^{6} + 35488260768 x^{5} + 46408266743 x^{4} + 66345171264 x^{3} + 136057926318 x^{2} + 159173865296 x + 74196697609$ | $2$ | $8$ | $8$ | $C_8\times C_2$ | $[\ ]_{2}^{8}$ |
\(31\) | $\Q_{31}$ | $x + 28$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{31}$ | $x + 28$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
31.2.1.1 | $x^{2} + 93$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
31.2.1.1 | $x^{2} + 93$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
31.2.1.1 | $x^{2} + 93$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
31.8.0.1 | $x^{8} + 25 x^{3} + 12 x^{2} + 24 x + 3$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ |