Normalized defining polynomial
\( x^{16} - 8 x^{15} + 47 x^{14} - 189 x^{13} + 934 x^{12} - 3511 x^{11} + 5529 x^{10} + 988 x^{9} + 4489 x^{8} - 56499 x^{7} + 1123050 x^{6} - 3134921 x^{5} + 3626014 x^{4} - 2111188 x^{3} + 637232 x^{2} - 91968 x + 4608 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-17348320607629615993685048266139=-\,17^{15}\cdot 67^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $89.63$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 67$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{5} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{12} a^{8} - \frac{1}{12} a^{7} + \frac{1}{12} a^{6} + \frac{1}{6} a^{5} + \frac{1}{12} a^{4} - \frac{1}{12} a^{3} - \frac{5}{12} a^{2} + \frac{1}{6} a$, $\frac{1}{12} a^{9} + \frac{1}{4} a^{3} - \frac{1}{3} a$, $\frac{1}{720} a^{10} - \frac{1}{144} a^{9} - \frac{1}{360} a^{8} + \frac{19}{360} a^{7} + \frac{17}{360} a^{6} + \frac{13}{90} a^{5} + \frac{157}{720} a^{4} + \frac{167}{720} a^{3} - \frac{59}{120} a^{2} - \frac{7}{36} a + \frac{1}{15}$, $\frac{1}{720} a^{11} - \frac{3}{80} a^{9} + \frac{7}{180} a^{8} + \frac{11}{180} a^{7} - \frac{43}{360} a^{6} + \frac{137}{720} a^{5} + \frac{13}{180} a^{4} - \frac{239}{720} a^{3} - \frac{29}{72} a^{2} - \frac{73}{180} a + \frac{1}{3}$, $\frac{1}{84240} a^{12} - \frac{1}{14040} a^{11} + \frac{1}{1755} a^{10} - \frac{37}{16848} a^{9} + \frac{1723}{42120} a^{8} + \frac{8}{81} a^{7} + \frac{3323}{84240} a^{6} + \frac{1285}{8424} a^{5} - \frac{629}{21060} a^{4} + \frac{18229}{84240} a^{3} - \frac{4301}{42120} a^{2} - \frac{2909}{7020} a - \frac{29}{117}$, $\frac{1}{84240} a^{13} + \frac{1}{7020} a^{11} - \frac{7}{42120} a^{10} + \frac{2921}{84240} a^{9} + \frac{115}{8424} a^{8} - \frac{7363}{84240} a^{7} + \frac{73}{8424} a^{6} + \frac{391}{5265} a^{5} - \frac{23}{1620} a^{4} + \frac{25073}{84240} a^{3} + \frac{1843}{14040} a^{2} + \frac{229}{780} a + \frac{29}{65}$, $\frac{1}{1518112290240} a^{14} - \frac{1}{216873184320} a^{13} - \frac{116297}{189764036280} a^{12} + \frac{5582347}{1518112290240} a^{11} + \frac{65551459}{216873184320} a^{10} - \frac{1172736373}{759056145120} a^{9} + \frac{29526756299}{1518112290240} a^{8} - \frac{103972782617}{1518112290240} a^{7} - \frac{2209022813}{94882018140} a^{6} - \frac{299030702587}{1518112290240} a^{5} + \frac{55928342881}{506037430080} a^{4} + \frac{49875538483}{253018715040} a^{3} + \frac{26233811147}{75905614512} a^{2} - \frac{1210440475}{3162733938} a + \frac{86932141}{2635611615}$, $\frac{1}{153329341314240} a^{15} + \frac{43}{153329341314240} a^{14} + \frac{49006211}{8518296739680} a^{13} + \frac{589808207}{153329341314240} a^{12} - \frac{207064321}{3407318695872} a^{11} + \frac{901782163}{6388722554760} a^{10} - \frac{13547306113}{2358912943296} a^{9} + \frac{1845675825197}{153329341314240} a^{8} - \frac{716067691}{50404122720} a^{7} + \frac{841632929621}{30665868262848} a^{6} - \frac{4649365109837}{21904191616320} a^{5} + \frac{35982842191}{182534930136} a^{4} + \frac{181199258839}{9583083832140} a^{3} - \frac{7986874101263}{19166167664280} a^{2} - \frac{141695726027}{798590319345} a - \frac{35223609727}{266196773115}$
Class group and class number
$C_{8}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 12490221748.4 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $D_{16}$ |
| Character table for $D_{16}$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.2.329171.1, 8.2.123414690307499.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | $16$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 17 | Data not computed | ||||||
| 67 | Data not computed | ||||||