Normalized defining polynomial
\( x^{16} - 3 x^{15} + 26 x^{14} - 27 x^{13} + 302 x^{12} - 226 x^{11} + 3279 x^{10} - 7406 x^{9} + 19736 x^{8} - 46509 x^{7} + 67736 x^{6} - 275084 x^{5} + 782497 x^{4} - 1180866 x^{3} + 1073416 x^{2} - 561890 x + 3775 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1450169698441125460523978872159=-\,17^{15}\cdot 47^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $76.75$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{5} a^{10} - \frac{2}{5} a^{9} - \frac{2}{5} a^{7} - \frac{1}{5} a^{6} - \frac{2}{5} a^{5} + \frac{1}{5} a^{4} - \frac{1}{5} a^{2} - \frac{2}{5} a$, $\frac{1}{5} a^{11} + \frac{1}{5} a^{9} - \frac{2}{5} a^{8} + \frac{1}{5} a^{6} + \frac{2}{5} a^{5} + \frac{2}{5} a^{4} - \frac{1}{5} a^{3} + \frac{1}{5} a^{2} + \frac{1}{5} a$, $\frac{1}{10} a^{12} - \frac{1}{2} a^{9} - \frac{1}{5} a^{7} + \frac{3}{10} a^{6} + \frac{2}{5} a^{5} - \frac{1}{5} a^{4} + \frac{1}{10} a^{3} + \frac{1}{5} a^{2} + \frac{1}{5} a - \frac{1}{2}$, $\frac{1}{50} a^{13} - \frac{1}{25} a^{12} + \frac{1}{50} a^{10} + \frac{4}{25} a^{9} + \frac{4}{25} a^{8} + \frac{3}{10} a^{7} + \frac{1}{25} a^{6} + \frac{9}{25} a^{5} + \frac{1}{50} a^{4} + \frac{2}{5} a^{3} - \frac{9}{25} a^{2} - \frac{11}{50} a + \frac{2}{5}$, $\frac{1}{5350} a^{14} + \frac{19}{5350} a^{13} - \frac{147}{5350} a^{12} - \frac{259}{5350} a^{11} - \frac{481}{5350} a^{10} - \frac{2189}{5350} a^{9} + \frac{1103}{5350} a^{8} - \frac{1903}{5350} a^{7} + \frac{319}{1070} a^{6} + \frac{2059}{5350} a^{5} + \frac{2421}{5350} a^{4} + \frac{1957}{5350} a^{3} + \frac{1751}{5350} a^{2} + \frac{2639}{5350} a + \frac{409}{1070}$, $\frac{1}{15976577110391531339230168924947037250} a^{15} + \frac{7647597385524017929461637433842}{84087247949429112311737731183931775} a^{14} - \frac{862309055354914948961247660235529}{1452416100944684667202742629540639750} a^{13} - \frac{336258241899569424132465043294877977}{7988288555195765669615084462473518625} a^{12} - \frac{98797166117249922091234964400003364}{1597657711039153133923016892494703725} a^{11} + \frac{5390998518472654250768042963294679}{1452416100944684667202742629540639750} a^{10} + \frac{3158977245853677799420451108017467378}{7988288555195765669615084462473518625} a^{9} + \frac{46737934458990114617473593383227601}{7988288555195765669615084462473518625} a^{8} - \frac{14341134024970489925154862969042983}{15976577110391531339230168924947037250} a^{7} + \frac{63976892739719941364408427573304966}{7988288555195765669615084462473518625} a^{6} + \frac{507531803046564301675254531245323461}{7988288555195765669615084462473518625} a^{5} - \frac{702795540394274019554105416886855373}{1452416100944684667202742629540639750} a^{4} + \frac{2202194473372371933206795615762387214}{7988288555195765669615084462473518625} a^{3} + \frac{3096813359282830903002800078135816594}{7988288555195765669615084462473518625} a^{2} - \frac{1435647514561966834019652731556863177}{3195315422078306267846033784989407450} a + \frac{35674905695928061130442074234909349}{127812616883132250713841351399576298}$
Class group and class number
$C_{8}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 70490191.6085 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $D_{16}$ |
| Character table for $D_{16}$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.2.230911.1, 8.2.42602592046879.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | $16$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}$ | $16$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | $16$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 17 | Data not computed | ||||||
| 47 | Data not computed | ||||||