Normalized defining polynomial
\( x^{16} - 2 x^{15} + 14 x^{14} + 105 x^{13} - 755 x^{12} + 4640 x^{11} - 15581 x^{10} + 41759 x^{9} - 90470 x^{8} + 103959 x^{7} + 31703 x^{6} - 235268 x^{5} - 309548 x^{4} + 1806831 x^{3} - 2517036 x^{2} + 1299672 x - 235224 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1384920350642158387276644512694891=-\,3^{7}\cdot 97^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $117.85$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{6} a^{6} + \frac{1}{6} a^{4} - \frac{1}{2} a^{3} - \frac{1}{3} a^{2} - \frac{1}{2} a$, $\frac{1}{6} a^{7} + \frac{1}{6} a^{5} - \frac{1}{3} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{12} a^{8} - \frac{1}{12} a^{2}$, $\frac{1}{180} a^{9} + \frac{1}{60} a^{8} - \frac{1}{30} a^{7} + \frac{1}{15} a^{6} + \frac{1}{10} a^{5} - \frac{2}{15} a^{4} - \frac{37}{180} a^{3} - \frac{9}{20} a^{2} + \frac{13}{30} a + \frac{1}{5}$, $\frac{1}{360} a^{10} - \frac{1}{360} a^{9} + \frac{1}{30} a^{8} - \frac{1}{15} a^{7} - \frac{1}{12} a^{6} - \frac{11}{60} a^{5} + \frac{59}{360} a^{4} - \frac{173}{360} a^{3} - \frac{13}{60} a^{2} + \frac{7}{30} a - \frac{2}{5}$, $\frac{1}{2160} a^{11} + \frac{1}{432} a^{9} - \frac{1}{24} a^{8} + \frac{17}{360} a^{7} - \frac{1}{45} a^{6} + \frac{37}{432} a^{5} + \frac{5}{72} a^{4} + \frac{91}{2160} a^{3} - \frac{49}{180} a^{2} + \frac{23}{90} a - \frac{1}{2}$, $\frac{1}{2160} a^{12} - \frac{1}{2160} a^{10} - \frac{13}{360} a^{8} - \frac{1}{45} a^{7} - \frac{67}{2160} a^{6} + \frac{43}{360} a^{5} - \frac{479}{2160} a^{4} + \frac{157}{360} a^{3} + \frac{29}{90} a^{2} + \frac{3}{10} a - \frac{1}{5}$, $\frac{1}{38880} a^{13} + \frac{1}{38880} a^{12} + \frac{1}{4860} a^{11} - \frac{1}{38880} a^{10} + \frac{5}{2592} a^{9} + \frac{1}{135} a^{8} - \frac{257}{7776} a^{7} - \frac{293}{7776} a^{6} + \frac{1567}{9720} a^{5} - \frac{7619}{38880} a^{4} + \frac{509}{4320} a^{3} + \frac{1087}{3240} a^{2} + \frac{2}{45} a + \frac{9}{20}$, $\frac{1}{59486400} a^{14} - \frac{19}{14871600} a^{13} - \frac{401}{19828800} a^{12} + \frac{3163}{59486400} a^{11} + \frac{4153}{29743200} a^{10} - \frac{2077}{1166400} a^{9} - \frac{2015089}{59486400} a^{8} - \frac{67742}{929475} a^{7} + \frac{85841}{1166400} a^{6} + \frac{3736433}{59486400} a^{5} + \frac{1071457}{5948640} a^{4} + \frac{9058453}{19828800} a^{3} + \frac{1327573}{4957200} a^{2} + \frac{37103}{275400} a - \frac{11281}{30600}$, $\frac{1}{711497547920202595200} a^{15} - \frac{374034185777}{79055283102244732800} a^{14} + \frac{3809983031411549}{711497547920202595200} a^{13} + \frac{36231661903820507}{355748773960101297600} a^{12} - \frac{8606692284054611}{47433169861346839680} a^{11} - \frac{773514092089315909}{711497547920202595200} a^{10} - \frac{153364581411748537}{71149754792020259520} a^{9} + \frac{302522149570186417}{15811056620448946560} a^{8} - \frac{53620504712852292353}{711497547920202595200} a^{7} - \frac{19370309081954842397}{355748773960101297600} a^{6} - \frac{57322340528861675857}{237165849306734198400} a^{5} - \frac{2717687528513208061}{64681595265472963200} a^{4} - \frac{10432027914973735729}{237165849306734198400} a^{3} - \frac{1403726210457671191}{3487733078040208800} a^{2} + \frac{15391209898356451}{41174626615752465} a - \frac{4152771104166773}{33272425548082800}$
Class group and class number
$C_{8}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1403138189870 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $D_{16}$ |
| Character table for $D_{16}$ |
Intermediate fields
| \(\Q(\sqrt{97}) \), 4.2.2738019.1, 8.2.2181553680909051.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}$ | $16$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | $16$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | $16$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | $16$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 97 | Data not computed | ||||||