Normalized defining polynomial
\( x^{16} - 6 x^{15} + 13 x^{14} - 15 x^{13} + 120 x^{12} - 1565 x^{11} + 4081 x^{10} + 2766 x^{9} + 24690 x^{8} - 169895 x^{7} + 90832 x^{6} + 285015 x^{5} - 18016 x^{4} + 35647 x^{3} - 1002 x^{2} + 450 x + 81 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-135272565795848237293667454751=-\,7^{8}\cdot 31^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $66.18$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{3} a^{8} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{21} a^{10} + \frac{1}{21} a^{9} - \frac{1}{21} a^{8} - \frac{1}{7} a^{7} - \frac{1}{21} a^{6} + \frac{5}{21} a^{5} - \frac{2}{21} a^{4} + \frac{3}{7} a^{3} + \frac{2}{7} a^{2} + \frac{3}{7} a - \frac{1}{7}$, $\frac{1}{21} a^{11} - \frac{2}{21} a^{9} - \frac{2}{21} a^{8} + \frac{2}{21} a^{7} + \frac{2}{7} a^{6} - \frac{1}{3} a^{5} - \frac{10}{21} a^{4} - \frac{1}{7} a^{3} + \frac{1}{7} a^{2} + \frac{3}{7} a + \frac{1}{7}$, $\frac{1}{63} a^{12} + \frac{1}{63} a^{11} - \frac{1}{63} a^{10} - \frac{1}{21} a^{9} - \frac{8}{63} a^{8} - \frac{2}{63} a^{7} + \frac{5}{63} a^{6} - \frac{4}{21} a^{5} - \frac{29}{63} a^{4} - \frac{26}{63} a^{3} - \frac{31}{63} a^{2} - \frac{1}{3} a$, $\frac{1}{63} a^{13} + \frac{1}{63} a^{11} + \frac{1}{63} a^{10} - \frac{8}{63} a^{9} - \frac{1}{21} a^{8} + \frac{4}{63} a^{7} - \frac{2}{63} a^{6} - \frac{23}{63} a^{5} + \frac{10}{21} a^{4} + \frac{13}{63} a^{3} - \frac{26}{63} a^{2} + \frac{4}{21} a$, $\frac{1}{5355} a^{14} + \frac{31}{5355} a^{13} + \frac{1}{5355} a^{12} - \frac{37}{5355} a^{11} - \frac{4}{765} a^{10} - \frac{773}{5355} a^{9} + \frac{877}{5355} a^{8} + \frac{32}{5355} a^{7} - \frac{337}{765} a^{6} - \frac{218}{765} a^{5} + \frac{1021}{5355} a^{4} + \frac{1616}{5355} a^{3} + \frac{667}{5355} a^{2} - \frac{207}{595} a + \frac{71}{595}$, $\frac{1}{172835325743503466878050890835} a^{15} - \frac{202799322071003870404883}{34567065148700693375610178167} a^{14} + \frac{128011190275505329541358931}{34567065148700693375610178167} a^{13} - \frac{1044917073741011660466271493}{172835325743503466878050890835} a^{12} + \frac{3655650490431911042743969184}{172835325743503466878050890835} a^{11} - \frac{726499489509107385418513}{107018777550156945435325629} a^{10} - \frac{17813689120588070393190320}{356361496378357663666084311} a^{9} + \frac{18027242480869345333199659}{290479539064711709038740993} a^{8} - \frac{11168645998974016926489499636}{172835325743503466878050890835} a^{7} + \frac{15070596514384986105816996713}{172835325743503466878050890835} a^{6} - \frac{81559416246843413178405770923}{172835325743503466878050890835} a^{5} + \frac{5197847517459004059431383322}{34567065148700693375610178167} a^{4} + \frac{39113354180085964643878444021}{172835325743503466878050890835} a^{3} - \frac{2565359537909640229479340118}{11522355049566897791870059389} a^{2} + \frac{2026680121177529278566169928}{19203925082611496319783432315} a + \frac{36862470507049167926648383}{304824207660499941583864005}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1882860909.05 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $D_{16}$ |
| Character table for $D_{16}$ |
Intermediate fields
| \(\Q(\sqrt{217}) \), 4.2.1459759.1, 8.2.66057786480511.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}$ | R | $16$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | $16$ | $16$ | R | $16$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | $16$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | $16$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31 | Data not computed | ||||||