Normalized defining polynomial
\( x^{16} - 6 x^{15} + 23 x^{14} - 118 x^{13} + 456 x^{12} - 924 x^{11} + 3492 x^{10} - 9532 x^{9} + 5553 x^{8} - 33142 x^{7} + 82411 x^{6} + 174240 x^{5} + 220821 x^{4} - 276410 x^{3} - 2521242 x^{2} - 3309980 x - 5229262 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-120225114802785897280700416=-\,2^{18}\cdot 2777^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $42.66$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 2777$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{5} a^{13} + \frac{1}{5} a^{12} + \frac{2}{5} a^{11} + \frac{2}{5} a^{10} - \frac{2}{5} a^{9} - \frac{1}{5} a^{8} - \frac{1}{5} a^{7} + \frac{1}{5} a^{6} - \frac{1}{5} a^{5} - \frac{1}{5} a^{4} + \frac{1}{5} a^{3} + \frac{1}{5} a^{2} + \frac{1}{5} a - \frac{2}{5}$, $\frac{1}{25} a^{14} + \frac{2}{25} a^{13} - \frac{2}{25} a^{12} + \frac{9}{25} a^{11} + \frac{2}{5} a^{10} + \frac{12}{25} a^{9} + \frac{3}{25} a^{8} + \frac{1}{5} a^{6} - \frac{2}{25} a^{5} - \frac{2}{5} a^{4} - \frac{8}{25} a^{3} - \frac{8}{25} a^{2} + \frac{4}{25} a - \frac{7}{25}$, $\frac{1}{88276951051775595158979608421450155099027125} a^{15} - \frac{1177978636238291342489128964282212026660647}{88276951051775595158979608421450155099027125} a^{14} - \frac{24288322323403150061601355753701614446622}{706215608414204761271836867371601240792217} a^{13} + \frac{4080111691988815090911242376171214465515007}{88276951051775595158979608421450155099027125} a^{12} + \frac{6794375943952024271412663565782755401394469}{88276951051775595158979608421450155099027125} a^{11} - \frac{30952002251572190453957764221198178818328928}{88276951051775595158979608421450155099027125} a^{10} - \frac{4757906362686167071851215033870931826666382}{17655390210355119031795921684290031019805425} a^{9} - \frac{3408026795773220632967592941295677561441222}{88276951051775595158979608421450155099027125} a^{8} + \frac{8079100935578321980833067789277353247876971}{17655390210355119031795921684290031019805425} a^{7} - \frac{8354527109188967526453104702102187010631572}{88276951051775595158979608421450155099027125} a^{6} - \frac{465046114973271934325223445621636797445986}{1317566433608590972522083707782838135806375} a^{5} - \frac{6738424279202519025130270352798205789031143}{88276951051775595158979608421450155099027125} a^{4} - \frac{17600899151377364993512971547144251141086391}{88276951051775595158979608421450155099027125} a^{3} - \frac{35558208239940213782588387766966237821878529}{88276951051775595158979608421450155099027125} a^{2} + \frac{41613380741820683839334676335950879451191722}{88276951051775595158979608421450155099027125} a + \frac{28747358824349887214100892660181034658075843}{88276951051775595158979608421450155099027125}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3496312.18154 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 6144 |
| The 54 conjugacy class representatives for t16n1674 are not computed |
| Character table for t16n1674 is not computed |
Intermediate fields
| 4.4.2777.1, 8.2.30846916.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | $16$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.6.9 | $x^{4} + 2 x^{3} + 6$ | $4$ | $1$ | $6$ | $D_{4}$ | $[2, 2]^{2}$ |
| 2.12.12.8 | $x^{12} + 8 x^{10} - 31 x^{8} + 64 x^{6} - 53 x^{4} - 8 x^{2} - 45$ | $2$ | $6$ | $12$ | 12T51 | $[2, 2, 2, 2]^{6}$ | |
| 2777 | Data not computed | ||||||