Normalized defining polynomial
\( x^{16} - 6 x^{15} + 16 x^{14} + 36 x^{13} + 140 x^{12} - 292 x^{11} + 1777 x^{10} + 11270 x^{9} + 22925 x^{8} + 23814 x^{7} + 45858 x^{6} + 109772 x^{5} - 335441 x^{4} - 243898 x^{3} + 67953 x^{2} - 366316 x - 644531 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-120225114802785897280700416=-\,2^{18}\cdot 2777^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $42.66$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 2777$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{927737540543552188736661425804360727103574820982001} a^{15} + \frac{184011408537625096187379618679749979411593359374914}{927737540543552188736661425804360727103574820982001} a^{14} + \frac{297303102622508059439917580267225815608050764864550}{927737540543552188736661425804360727103574820982001} a^{13} + \frac{273175353054695747229160776863688349820421730138791}{927737540543552188736661425804360727103574820982001} a^{12} + \frac{195597446782078080619549224187732815697802384901475}{927737540543552188736661425804360727103574820982001} a^{11} - \frac{304069543890771016591640834212189139772090803251318}{927737540543552188736661425804360727103574820982001} a^{10} + \frac{429466808208223505895435306196461651201482350504154}{927737540543552188736661425804360727103574820982001} a^{9} + \frac{255083821403172651408185263335710629197312201174993}{927737540543552188736661425804360727103574820982001} a^{8} + \frac{328070839256508579684358745273388751298786228018798}{927737540543552188736661425804360727103574820982001} a^{7} + \frac{2933952368184494448238734059092417971683319635526}{927737540543552188736661425804360727103574820982001} a^{6} - \frac{41691699206345083438082474279554556382365818702405}{927737540543552188736661425804360727103574820982001} a^{5} + \frac{127219439211243636377240383321077219082409458019738}{927737540543552188736661425804360727103574820982001} a^{4} + \frac{295017604259196132040237673988081361742390072036655}{927737540543552188736661425804360727103574820982001} a^{3} - \frac{60390321260723891073197248658160225448946811929516}{927737540543552188736661425804360727103574820982001} a^{2} - \frac{319690062339768739755307264699293404775157319943195}{927737540543552188736661425804360727103574820982001} a - \frac{77000443438881946795857717723362460760699218724960}{927737540543552188736661425804360727103574820982001}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5878975.64164 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 3072 |
| The 36 conjugacy class representatives for t16n1540 |
| Character table for t16n1540 is not computed |
Intermediate fields
| 4.4.2777.1, 8.2.30846916.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.6.9 | $x^{4} + 2 x^{3} + 6$ | $4$ | $1$ | $6$ | $D_{4}$ | $[2, 2]^{2}$ |
| 2.12.12.8 | $x^{12} + 8 x^{10} - 31 x^{8} + 64 x^{6} - 53 x^{4} - 8 x^{2} - 45$ | $2$ | $6$ | $12$ | 12T51 | $[2, 2, 2, 2]^{6}$ | |
| 2777 | Data not computed | ||||||