Normalized defining polynomial
\( x^{16} - 4 x^{15} + 4 x^{14} - 7 x^{13} + 50 x^{12} - 123 x^{11} + 108 x^{10} + 131 x^{8} - 909 x^{7} + 2303 x^{6} - 3605 x^{5} + 3831 x^{4} - 2814 x^{3} + 1469 x^{2} - 521 x + 61 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-102218815055263671875=-\,5^{10}\cdot 11^{4}\cdot 59^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $17.81$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 11, 59$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{5} a^{10} + \frac{2}{5} a^{9} - \frac{2}{5} a^{8} + \frac{2}{5} a^{7} - \frac{1}{5} a^{6} - \frac{2}{5} a^{5} + \frac{1}{5} a^{4} + \frac{1}{5} a^{2} - \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{5} a^{11} - \frac{1}{5} a^{9} + \frac{1}{5} a^{8} - \frac{2}{5} a^{4} + \frac{1}{5} a^{3} + \frac{2}{5} a^{2} + \frac{1}{5} a + \frac{2}{5}$, $\frac{1}{15} a^{12} + \frac{1}{15} a^{10} + \frac{1}{3} a^{9} + \frac{2}{5} a^{8} - \frac{1}{15} a^{7} - \frac{7}{15} a^{6} - \frac{2}{5} a^{5} + \frac{1}{5} a^{4} + \frac{2}{15} a^{3} - \frac{7}{15} a^{2} - \frac{2}{15}$, $\frac{1}{15} a^{13} + \frac{1}{15} a^{11} - \frac{1}{15} a^{10} - \frac{2}{5} a^{9} - \frac{4}{15} a^{8} - \frac{4}{15} a^{7} - \frac{4}{15} a^{4} - \frac{7}{15} a^{3} - \frac{2}{5} a^{2} + \frac{4}{15} a + \frac{2}{5}$, $\frac{1}{15} a^{14} - \frac{1}{15} a^{11} - \frac{1}{15} a^{10} + \frac{1}{5} a^{9} - \frac{7}{15} a^{8} - \frac{2}{15} a^{7} + \frac{1}{15} a^{6} + \frac{1}{3} a^{5} - \frac{4}{15} a^{4} + \frac{7}{15} a^{3} + \frac{2}{15} a^{2} - \frac{4}{15}$, $\frac{1}{2329301324009865} a^{15} - \frac{5224471364962}{465860264801973} a^{14} + \frac{424935481664}{75138752387415} a^{13} - \frac{11925801468076}{776433774669955} a^{12} - \frac{19845446178537}{776433774669955} a^{11} + \frac{6333349658414}{80320735310685} a^{10} + \frac{1046651325241591}{2329301324009865} a^{9} - \frac{106679822769062}{2329301324009865} a^{8} - \frac{2107809631271}{15027750477483} a^{7} + \frac{123537461792737}{465860264801973} a^{6} - \frac{98543096883214}{465860264801973} a^{5} + \frac{36082658319037}{75138752387415} a^{4} + \frac{6691700644903}{26773578436895} a^{3} + \frac{626815914808201}{2329301324009865} a^{2} + \frac{645503232634054}{2329301324009865} a + \frac{220643241463327}{776433774669955}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3232.81111967 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 4096 |
| The 88 conjugacy class representatives for t16n1574 are not computed |
| Character table for t16n1574 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.2.275.1, 8.2.4461875.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $16$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | R | $16$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | $16$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $11$ | 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.8.0.1 | $x^{8} + x^{2} - 2 x + 6$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 59 | Data not computed | ||||||