Normalized defining polynomial
\( x^{16} - x^{15} - 1288 x^{14} - 16925 x^{13} + 265395 x^{12} + 6325863 x^{11} + 7509025 x^{10} - 662101208 x^{9} - 4489506330 x^{8} + 16087587618 x^{7} + 256010445822 x^{6} + 389263434099 x^{5} - 4693197033536 x^{4} - 18212997720900 x^{3} + 14395417397350 x^{2} + 163997627966411 x + 208148520549407 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(9943583883093737930218051237711077235104795837841=29^{14}\cdot 109^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1154.37$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $29, 109$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{487370384861226495922554963217865881980838024397597984263285266395545761843157735867} a^{15} + \frac{174845222287553094470573774650410052025785814826350452794056560509582057248826321926}{487370384861226495922554963217865881980838024397597984263285266395545761843157735867} a^{14} - \frac{118175505220313909333657354960231953508612824127985715205858090695679449631916735712}{487370384861226495922554963217865881980838024397597984263285266395545761843157735867} a^{13} + \frac{62298894243349001419907747638609530371015338122469176176806314932393724119257068022}{487370384861226495922554963217865881980838024397597984263285266395545761843157735867} a^{12} + \frac{33025549526649063562613753978109273103718906160106092097610404510732984130616775472}{487370384861226495922554963217865881980838024397597984263285266395545761843157735867} a^{11} + \frac{160367951848035290792998050849075659912690490950512856241588305079238206625641525218}{487370384861226495922554963217865881980838024397597984263285266395545761843157735867} a^{10} - \frac{145529912830175851332816734440019033555602415999815159971073788374255938755757414742}{487370384861226495922554963217865881980838024397597984263285266395545761843157735867} a^{9} + \frac{201001284111196423405412029987126182815429753412255491968769116326721829597277887489}{487370384861226495922554963217865881980838024397597984263285266395545761843157735867} a^{8} - \frac{115009150427066875661699405339761572692678980614764750845371509717052888816099448305}{487370384861226495922554963217865881980838024397597984263285266395545761843157735867} a^{7} - \frac{133290116982321465208910370423384034359564351658950965653371986861007993423768120781}{487370384861226495922554963217865881980838024397597984263285266395545761843157735867} a^{6} - \frac{132758254223279414164204330698880750309852796129198747562553650517645743413074204260}{487370384861226495922554963217865881980838024397597984263285266395545761843157735867} a^{5} + \frac{52701384909137974449868315702345621885929106592822583653383438607472806479138294219}{487370384861226495922554963217865881980838024397597984263285266395545761843157735867} a^{4} - \frac{92186394425464193105427645888912865847867566182785205971520830950899773889576052592}{487370384861226495922554963217865881980838024397597984263285266395545761843157735867} a^{3} + \frac{185057326198321380716777899428496323681447410091921277625823013430028999365279551836}{487370384861226495922554963217865881980838024397597984263285266395545761843157735867} a^{2} - \frac{111618910447496968167062692478760360396063564366668391959373324034409476255770642111}{487370384861226495922554963217865881980838024397597984263285266395545761843157735867} a + \frac{195577421703403779260582248188098281690318884392127812965759552181976504951427174159}{487370384861226495922554963217865881980838024397597984263285266395545761843157735867}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6499563080450000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_8.C_4$ |
| Character table for $C_8.C_4$ |
Intermediate fields
| \(\Q(\sqrt{109}) \), \(\Q(\sqrt{3161}) \), \(\Q(\sqrt{29}) \), \(\Q(\sqrt{29}, \sqrt{109})\), 8.8.997578257579911722961.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $29$ | 29.8.7.2 | $x^{8} - 116$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 29.8.7.2 | $x^{8} - 116$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $109$ | 109.8.7.2 | $x^{8} - 3924$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 109.8.7.2 | $x^{8} - 3924$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |